A.1.8 Defining Acyclicity for an Undirected Graph

An undirected graph can be represented as a binary relation, constrained to be symmetric. Write constraints on such a relation that rule out cycles. Here is a suitable template:

```alloy
module exercises/undirected
sig Node {adjs: set Node}
pred acyclic () {
    adjs = ~adjs
    ...
    your constraints here
}
run acyclic for 4
```

A.1.9 Axiomatizing Transitive Closure

Transitive closure is not axiomatizable in first-order logic. In short, that means that if you want to express it, you need a special operator, because it can’t be defined in terms of other operators. Here’s a bogus attempt to do just that; your challenge is to use the Alloy Analyzer to find the flaw.

Recall that the transitive closure of a binary relation \(r \) is the smallest transitive relation \(R \) that includes \(r \). Let’s say \(R \) is a transitive cover of \(r \) if \(R \) is transitive and includes \(r \). To ensure that \(R \) is the smallest transitive cover, we can say that removing any tuple \(a \rightarrow b \) from \(R \) gives a relation that is not a transitive cover of \(r \). Formalize this by completing the following template:

```alloy
module exercises/closure
pred transCover (R, r: univ->univ) {
    ...
    your constraints here
}
pred transClosure (R, r: univ->univ) {
    transCover [R, r]
    ...
    your constraint here
}
assert Equivalence {
    all R, r: univ->univ | transClosure[R, r] iff R = ^r
}
check Equivalence for 3
```

Now execute the command, examine the counterexample, and explain what the bug is.
In fact, for finite domains – which is how Alloy is interpreted – closure can be axiomatized in first-order logic. Some recent technical reports explains how to do this [16, 9]. (Thanks to Masahiro Sakai for telling me about this work.) Define a ternary relation \(C \) such that

\[
x \rightarrow y \rightarrow z \text{ in } C
\]

when \(y \) is at some non-zero distance on a shortest path in the relation \(r \) from \(x \) to \(z \). The reflexive transitive closure \(R \) of \(r \) can be expressed in terms of \(C \) as

\[
R = \{ x, y : \text{univ} | x \rightarrow y \rightarrow y \text{ in } C \text{ or } x = y \}
\]

and—this is the surprising part—\(C \) itself can be defined by the following axioms:

\[
\text{all } x, y, z, u: \text{univ} \{
\begin{align*}
x \rightarrow x \rightarrow y & \text{ not in } C \\
x \rightarrow y \rightarrow u & \text{ in } C \text{ and } y \rightarrow z \rightarrow u \text{ in } C \Rightarrow x \rightarrow z \rightarrow u \text{ in } C \\
x \rightarrow y \rightarrow y & \text{ in } C \text{ and } y \rightarrow z \rightarrow z \text{ in } C \text{ and } x \neq z \Rightarrow x \rightarrow z \rightarrow z \text{ in } C \\
x \rightarrow y \rightarrow y & \text{ in } r \text{ and } x \neq y \Rightarrow x \rightarrow y \rightarrow y \text{ in } C \\
x \rightarrow y \rightarrow y & \text{ in } C \Rightarrow \text{some } v: \text{univ} | x \rightarrow v \text{ in } r \text{ and } x \rightarrow v \rightarrow y \text{ in } C \\
x \rightarrow y \rightarrow z & \text{ in } C \text{ and } y \neq z \Rightarrow y \rightarrow z \rightarrow z \text{ in } C
\end{align*}
\}
\]

To check this axiomatization, just define a predicate like this:

\[
\text{pred} \ \text{transClosure'} (R, r: \text{univ} \rightarrow \text{univ}, C: \text{univ} \rightarrow \text{Univ} \rightarrow \text{univ}) \{
\begin{align*}
\text{... axioms here}
\end{align*}
\}
\]

and edit the assertion to read

\[
\text{assert} \ \text{Equivalence}\{
\begin{align*}
\text{all } R, r: \text{univ} \rightarrow \text{univ}, C: \text{univ} \rightarrow \text{Univ} \rightarrow \text{univ} | \\
\text{transClosure'} [R, r, C] \implies R = *r
\end{align*}
\}
\]

Note that the check cannot be bidirectional. Can you see why? Replace \(\text{implies} \) by \(\text{iff} \) to generate a counterexample, and explain what’s going on.

A.1.10 Address Book Constraints and Expressions

In this exercise, you’ll get some practice writing expressions and constraints for a simple multilevel address book. Consider a set \(\text{Addr} \) of ad-