
Appendix E:
Alternative Approaches

The models in this appendix were contributed by Michael Butler, John
Fitzgerald, Martin Gogolla, Peter Gorm Larsen, and Jim Woodcock, and
are included here with their permission.

Alloy is only one of several approaches to the modeling and analysis
of software abstractions. This appendix briefly describes four of these
alternatives: B, OCL, VDM, and Z. Its purpose is both to help those
in search of an approach that matches their needs, and—for readers
already familiar with other approaches—to highlight the respects in
which they differ from Alloy.

I chose these four approaches because of their ability to capture com-
plex structure succinctly and abstractly. They are all well known, and
each has an active and enthusiastic community of users and research-
ers. Other modeling and analysis approaches can be used effectively for
software design in specialized domains: there are many model checkers,
for example, that can check protocols and concurrent algorithms, but
they are not considered here since (with the exception of FDR) they
tend to have only rudimentary support for structuring of data.

Some features are common to all the approaches, including Alloy. They
all offer a notation that can capture software abstractions more suc-
cinctly and directly than a programming language can; all of them, de-
spite differences in syntax and semantics, view the state in terms of clas-
sical mathematical structures, such as sets and relations, and describe
behaviors declaratively, using constraints. Lightweight tools are avail-
able for all of them, in which constraints are evaluated against concrete
cases, and new tool projects are underway for all these approaches that
are likely to extend their power and applicability greatly.

At the same time, there are important differences. B is more operational
in flavor; its notation is more like an abstract programming language
than a specification language. OCL has a very different syntax from the
others, reminiscent of Smalltalk. In B and VDM, and to some extent Z
and OCL, a particular notion of state machine is hardwired, in contrast
to Alloy, which is designed to support a variety of idioms, each as easy

302 appendix e: alternative approaches

(or difficult!) to express as the others. B, VDM and Z were designed
more with proof in mind than lightweight analysis, and so, unlike Alloy
and OCL, are supported by specialized theorem provers.

All these languages predate Alloy, which has benefited greatly from their
experience. Alloy was designed for similar applications, but with more
emphasis on automatic analysis. In pursuit of this goal, the language
was stripped down to the bare essentials of structural modeling, and
was developed hand-in-hand with its analysis. Any feature that would
thwart analysis was excluded. Consequently, Alloy’s analysis is more
powerful than the lightweight analyses offered by the other approaches,
which (with the exception of ProB) are mostly “animators” that execute
a model on given test cases. Unlike an animator, the Alloy Analyzer
does not require the user to provide initial conditions and inputs; it
does not restrict the language to an executable subset; and, because it
covers the entire space within the scope, it is more effective at uncov-
ering subtle bugs. The idea of analysis is built in to the language itself:
assertions can be recorded as part of a specification, and the scopes
(which bound the analysis) are confined to commands. The other ap-
proaches use tool-specific extensions instead.

Another goal in the design of Alloy was to be unusually small and
simple; it has fewer concepts than the other languages, and is in some
respects more flexible. For example, Alloy unifies all data structuring
within the notion of a relation; it uses the same relational join for index-
ing, dereferencing structures and applying functions; its signatures can
simulate the schemas of Z and the classes of OCL; and its assertions can
express invariant preservations, refinements and temporal properties
over traces.

These benefits are not, of course, without some cost. Alloy is less expres-
sive than the other languages. Whereas Alloy’s structures are strictly
first order, B, VDM and Z all support higher-order structures and quan-
tifications. Carroll Morgan’s well known telephone switching specifica-
tion [55] in Z, for example, represents the connections as a set of sets of
endpoints. Such a structure is not directly representable in Alloy; you’d
need to model the connections as a relation between endpoints, or as a
set of connection atoms, each mapped to its endpoints. Morgan’s inge-
nious characterization of the behavior of the switch, with a higher-order
formula constraining the connection structure to be maximal, would
not be expressible at all in Alloy. A more significant (but less fundamen-
tal) deficiency of Alloy in this regard is its relatively poor support for
sequences and integers.

appendix e: alternative approaches 303

Aside from occupying a different point in the spectrum of expressive-
ness versus analyzability, the other languages naturally have their own
particular merits. B offers a more direct path to implementation; OCL
is integrated with UML, the modeling language of choice for many
companies; VDM supports both explicit and implicit forms of model-
ing; and Z has higher-order features that have been found very useful in
the structuring of large specifications.

A single problem is used to illustrate all the approaches. For each al-
ternative approach, a model was constructed by an expert. Michael
Butler developed the B version, using the ProB tool; Martin Gogolla
developed the OCL version using the USE tool; Peter Gorm Larsen and
John Fitzgerald developed the VDM version using VDMTools; and Jim
Woodcock developed the Z version using the Z/Eves theorem prover
and the Jaza animator. Unfortunately, there was not sufficient space to
include all their work in full. In particular, Martin Gogolla wrote a sec-
ond model showing that OCL could accommodate the “time-instant”
idiom used in the Alloy specification as easily as the standard pre/post
idiom, and constructed an ASSL procedure for generating test cases
automatically; and Jim Woodcock proved precondition theorems for all
operations, and the NoIntruder assertion with the help of Z/Eves.

E.1 An Example

To illustrate the different approaches, we’ll use an example of a scheme
for recodable hotel-door locks, similar to (but simpler than) the one
that appears in chapter 6. The purpose of the modeling and analysis is to
determine whether the scheme is effective in preventing unauthorized
access. An Alloy model is shown in figs. E.1 and E.2.

Fig. E.1 shows the declarations of the components of the state space,
and the initialization. Each key card is marked with two keys (line 5);
these markings are fixed, and do not change over time. The remaining
components are time-varying, as can be seen by the presence of the
Time column in their declarations: the current key for each room (8);
the front desk record of keys issued so far (11), and of which keys were
issued for which rooms in the immediately previous checkin (12); and
the set of cards held by each guest (15).

At initialization, the record at the front desk associating keys with
rooms matches the current keys of the room locks themselves (18), no
keys have been issued, and no guests hold cards (19).

304 appendix e: alternative approaches

Fig. E.2 shows the operations corresponding to checking in and enter-
ing a room, the definition of execution traces, and an assertion express-
ing the intended effect of the scheme in terms of denied access.

When a guest g checks in at the front desk to a room r, the guest is given
a card (5) whose first key is the last key that was issued for that room
(3), and whose second key is fresh (4). The desk’s records are updated
accordingly (6, 7). There is no change to the keys in the locks (9).

A guest can enter a room so long as he or she is holding a card (12)
whose first or second key matches the current key of the room’s lock. If
the second key matches, the lock’s key remains the same (14); if the first
key matches, the lock is recoded with the second key (15). No chang-
es are made to the front desk’s records (17) or to the sets of keys that
guests hold (18).

To shorten the example, no operation is given for checking out. The
use of a key by a new guest should invalidate previously issued keys, so

1	 module	hotel
2	 open	util/ordering	[Time]

3	 sig	Key,	Time	{}
4	 sig	Card	{
5	 	 fst,	snd:	Key
6	 	 }
7	 sig	Room	{
8	 	 key:	Key	one -> Time
9	 	 }
10	 one	sig	Desk	{
11	 	 issued:	Key -> Time,
12	 	 prev:	(Room -> lone	Key) -> Time
13	 	 }
14	 sig	Guest	{
15	 	 cards:	Card -> Time
16	 	 }

17	 pred	init	(t:	Time)	{
18	 	 Desk.prev.t	=	key.t
19	 	 no	issued.t	and	no	cards.t
20	 	 }

fig. e.1 Hotel locking example, in Alloy: part 1.

appendix e: alternative approaches 305

1	 pred	checkin	(t,	t’:	Time,	r:	Room,	g:	Guest)	{
2	 	 some	c:	Card	{
3	 	 	 c.fst	=	r.(Desk.prev.t)
4	 	 	 c.snd	not	in	Desk.issued.t
5	 	 	 cards.t’	=	cards.t	+	g -> c
6	 	 	 Desk.issued.t’	=	Desk.issued.t	+	c.snd
7	 	 	 Desk.prev.t’	=	Desk.prev.t	++	r -> c.snd
8	 	 	 }
9	 	 key.t	=	key.t’
10	 	 }

11	 pred	enter	(t,	t’:	Time,	r:	Room,	g:	Guest)	{
12	 	 some	c:	g.cards.t	|
13	 	 	 let	k	=	r.key.t	{
14	 	 	 	 c.snd	=	k	and	key.t’	=	key.t
15	 	 	 	 or	c.fst	=	k	and	key.t’	=	key.t	++	r -> c.snd
16	 	 	 	 }
17	 	 issued.t	=	issued.t’	and	(Desk<:prev).t	=	prev.t’
18	 	 cards.t	=	cards.t’
19	 	 }

20	 fact	Traces	{
21	 	 init	[first]
22	 	 all	t:	Time	-	last	|
23	 	 	 some	g:	Guest,	r:	Room	|
24	 	 	 	 checkin	[t,	next	[t],	r,	g]	or	enter	[t,	next	[t],	r,	g]
25	 	 }

26	 assert	NoIntruder	{
27	 	 no	t1:	Time,	disj	g,	g’:	Guest,	r:	Room	|
28	 	 	 let	t2	=	next	[t1],	t3	=	next	[t2],	t4	=	next	[t3]	{
29	 	 	 	 enter	[t1,	t2,	r,	g]
30	 	 	 	 enter	[t2,	t3,	r,	g’]
31	 	 	 	 enter	[t3,	t4,	r,	g]
32	 	 	 	 }
33	 	 }
34	 check	NoIntruder	for	3	but	6	Time,	1	Room,	2	Guest

fig. e.2 Hotel locking example, in Alloy: part 2.

306 appendix e: alternative approaches

whenever a guest checks in, the previous occupant is implicitly checked
out.

If you’re reading this appendix before you’ve read the rest of the book, a
few comments about Alloy might be helpful:

· A signature introduces a set, and some relations that have that set
as their first column. For example, the declaration for sig Card intro-
duces the set Card of key cards, and two relations, fst and snd, from
Card to Key.

· Multiplicities of relations are sometimes implicit, as in the declara-
tion of fst and snd, each of which maps a Card to one Key, and some-
times explicit using keywords, as in the declaration of key in Room,
which for a given room, maps one element of Key to each element of
Time. The keyword lone means at most one (and can be read “less than
or equal to one”), so the declaration of prev says that, for a given Desk,
and at a given Time, each Room is associated with at most one Key.

· The dot operator is relational join. Scalars are treated semantically
as singleton sets, and sets are treated as unary relations. Thus cards.t
is the relation that associates elements of Guest with elements of Card
at time t, c.fst is the first key of card c, and r.key.t is the current key of
room r at time t.

· The arrow operator -> is a cartesian product, and is used in the op-
erations to form tuples; + is union; - is difference; and ++ is relational
override.

Importing the built-in ordering module (fig. E.1, line 2) introduces a to-
tal ordering on time steps, the elements of the signature Time. The Traces
fact (fig. E.2, line 20) constrains the ordering so that the initialization
condition holds in the first state, and so that any state (except the last)
and its successor are related by either the checkin or the enter operation.

The assertion (26) claims that three enter events cannot occur in se-
quence for the same room, with the intervening one performed by one
guest, and the first and third by another. In other words, two guests
can’t use the same room at the same time.

The check command for this assertion instructs the analyzer to consider
all traces involving 3 cards, 3 keys, 6 time instants, one room and two
guests. Executing it produces a counterexample trace in 2 seconds (on a
PowerMac G5), consisting of the following steps (shown graphically in
the visualizer’s output of fig. E.3):

appendix e: alternative approaches 307

· Initially, the room Room0 holds key Key0 in its lock, and the desk asso-
ciates the room with the key, but holds no record of previously issued
keys. Note that the room has been marked with the label NoIntruder_r:
it will be the witness to the violation of the assertion NoIntruder, cor-
responding to the quantified variable r.

· In the second state, following a checkin, Guest0 has acquired a card
whose first and second keys are Key0 and Key1 respectively, and the
desk has recorded Key0 as issued. Note that the guest has been la-
beled NoIntruder_g, indicating that this guest will be the witness play-
ing the role of the variable g in the assertion.

· In the third state, following another checkin, a second guest, Guest1,
has acquired a card whose first and second keys are Key1 and Key0 re-
spectively—the same keys as Guest0, but in a different order—and the
desk has recorded Key1 as issued. This new guest has been marked
with the label NoIntruder_g’, indicating that it will be the witness play-
ing the role of the variable g’ in the assertion—the intruder.

· In the fourth state, the first entry has occurred—of Guest0—and the
room key has been changed to Key1.

· In the fifth state, the second, illegal, entry has occurred—of Guest1—
and the room key has been changed back to Key0.

· In the sixth and final state, the third entry has occurred—of Guest0
again—and the room key has been changed back to Key1.

The fault lies in the initial condition. Because Key0, the initial key of
Room0, was not recorded as having been issued, it was possible to issue
it twice, thus setting up the cycle. The keys already in the locks should
have been recorded as issued initially:

pred	init	(t:	Time)	{
	 Desk.prev.t	=	key.t
	 Desk.issued.t	=	Room.key.t	and	no	cards.t
	 }

With this change, the analysis exhausts the entire space without finding
a counterexample. For greater confidence, we can increase the scope.
Extending the scope to 4 keys and cards, 7 time instants, two guests and
one room

check	NoIntruder	for	4	but	7	Time,	2	Guest,	1	Room

reveals another counterexample, in which a guest checks in twice, with
another guest checking in between the two. These two guests can then

308 appendix e: alternative approaches

fig. e.3 Counterexample to assertion of fig. E.2. Each panel corresponds to a state;
execution begins in the top left, and continues from the bottom of the left-hand to the

top of the right-hand page.

appendix e: alternative approaches 309

310 appendix e: alternative approaches

perform the 3 entries in violation of the assertion. We can fix this prob-
lem by only allowing guests to check in if they have returned cards they
used previously. This can be modeled by changing one line of the checkin
operation from

cards.t’	=	cards.t	+	g -> c

to

cards.t’	=	cards.t	++	g -> c

where the override operator now causes the guest’s set of cards to be
replaced, rather than augmented, by the new one. Now no counterex-
ample is found, and we can increase the scope yet further for more con-
fidence. With at most 6 cards and keys, 12 time instants, and 3 guests
and rooms

check	NoIntruder	for	6	but	12	Time,	3	Guest,	3	Room

the space is exhausted in just under a minute. Of course, we have not
proved the assertion to hold, and it is possible (though unlikely) that
there is a counterexample in a larger scope. In a critical setting, it might
make sense to attempt to prove the assertion at this point. Theorem
provers can be applied to all of the approaches discussed here, even
though our focus is on more lightweight tools. B and Z in particular
are supported by readily available proof tools that are tailored to their
particular forms.

E.2 B

B was designed by Jean-Raymond Abrial, one of the earliest contribu-
tors to Z. It comprises a language (AMN) and a method for obtaining
implementations from abstract models by stepwise refinement. Start-
ing with a very abstract machine, details are added one layer at a time,
until a machine is obtained that can be translated directly into code. If
each refinement step is valid, the resulting code is guaranteed to meet
the top-level specification.

B is aimed primarily at the development of critical systems, and has
been applied on a number of industrial projects. Its best known applica-
tion to date was in a braking system for the Paris Metro.

The standard reference is Abrial’s book [1]. More introductory texts are
available [63, 80, 48], as well as a collection of case studies [64].

appendix e: alternative approaches 311

E.2.1 Modeling Notions of B
B’s specification language, Abstract Machine Notation (AMN), reveals
its focus in its name: a system is viewed (as in VDM and Z) as a state
machine with operations over a global state. A model consists of a series
of set declarations (akin to Alloy’s signatures or Z’s given sets); declara-
tions of state components (called “variables”); an invariant on the state;
an initialization condition; and a collection of operations.

State components are structured with sets and relations, as in Z; unlike
in Alloy, higher-order structures are permitted. AMN does not separate
type constraints from other, more expressive, invariants, so type check-
ing has a heuristic flavor.

As in VDM, the precondition of an operation is explicit. In contrast
to all the other approaches, the postcondition is not given as a logical
formula, but as a collection of substitutions. A substitution is like an
assignment statement, and can change the entire value of a state vari-
able or update the value of a relation at a particular point. To partially
constrain a state variable, one can assign to it an arbitrary value drawn
from a set characterized by a formula.

The rationale for this style of specification is that it makes theorem
proving easier: in manipulating operations syntactically, the postcondi-
tion can be treated literally as a substitution. The more operational style
is also more familiar to programmers, and it makes more explicit the
presence of non-determinism. Being programmatic in style, it is also
more readily converted into an imperative program. The drawback is
less flexibility in comparison to the other languages, and less support
for incrementality: you have to give a substitution for every state vari-
able (where, in Alloy for example, you can simulate an operation when
constraints have been written for only some of the state components).

E.2.2 Sample Model in B
A version of the hotel locking model in B is shown in 3 figures: the top-
level abstract machine in fig. E.4, and a refinement in figs. E.5 and E.6.

The abstract model (fig. E.4) has only a single state component—the
room occupancy roster—which is updated by the Checkin operation, and
guards the Enter operation. The special symbol +-> indicates a partial
function; B and Z use a collection of special arrows in place of the mul-
tiplicity markings of Alloy and OCL.

312 appendix e: alternative approaches

B makes a distinction between the precondition of an operation and its
guard. When invoked in a state in which the guard is false, an operation
blocks; in contrast, an operation should never be invoked unless the
precondition holds (and if invoked, any outcome may result). For the
Enter operation, for example, the precondition says that the arguments
should be a guest and a room; the guard says that the operation cannot
proceed unless the guest is in the occupancy roster for that room.

1	 MACHINE	hotel1

2	 SETS
3	 	 GUEST	=	{g1,g2}	;
4	 	 ROOM	=	{r1,r2}

5	 VARIABLES		alloc

6	 INVARIANT
7	 	 alloc	:	ROOM	+->	GUEST

8	 INITIALISATION		alloc	:=	{}

9	 OPERATIONS

10	 CheckIn(g,r)	=
11	 	 PRE
12	 	 	 g:GUEST		&		r:ROOM
13	 	 THEN
14	 	 	 SELECT
15	 	 	 	 r	/:	dom(alloc)
16	 	 	 THEN
17	 	 	 	 alloc(r)	:=	g
18	 	 	 END
19	 	 END	;

20	 Enter(g,r)	=
21	 	 PRE	g:GUEST	&	r:ROOM	THEN
22	 	 	 SELECT
23	 	 	 	 r	|->g	:	alloc
24	 	 	 THEN
25	 	 	 	 skip
26	 	 	 END
27	 			END	;

fig. e.4 B model: most abstract machine.

appendix e: alternative approaches 313

The basic sets are given particular values in this specification to set
bounds for analysis with the ProB tool. This is just like an Alloy scope
specification, but is set globally rather than on a command-by-com-
mand basis.

The refined model in figs. E.5 and E.6 has exactly the same structure.
The claim that this model, hotel2, refines the more abstract one, hotel1, is
an assertion to be checked by a tool.

In this model, the state is more complex, since it includes the mecha-
nism with cards and locks. The state is described as a collection of sets
and relations, as in Alloy, OCL and Z. The expression POW(e) denotes
the powerset of e—the set of sets of elements drawn from e—and the
colon in each declaration denotes set membership. A declaration such
as

key:	POW(KEY)

is thus equivalent to the Alloy declaration

key:	set	KEY

even the right-hand expression is higher-order in B but not in Alloy.
The arrow symbols >-> and –> denote injective and total functions re-
spectively. The constraint of line 13 says that the first and second keys
of a given card must be distinct. Including this as an invariant means
that the operations are expected to preserve it. Although semantically
this invariant is treated no differently from the declarations of ckey1 and
ckey2 that precede it, type checking distinguishes them, and will fail if
their order is reversed, with the invariant placed before the declarations.

Declaring ckey1 and ckey2 as state variables means that an operation can
be defined that changes the keys on a card. They might have been de-
clared instead as constants (as in the Alloy, OCL, and VDM models),
which would rule this out.

The initialization condition illustrates non-determinism. The ANY clause
binds an arbitrary set of keys to ks, and an arbitrary function from rooms
to keys to f; the arrow symbol in the declaration of this function makes
it injective, ensuring that no key is assigned to more than one room. The
body of the clause assigns the set of keys to key, and the function to lock
and prev. Note how the assignment of the non-deterministically chosen
f to these two variables has the same effect as the equality

Desk.prev.t	=	key.t

314 appendix e: alternative approaches

in the Alloy model, ensuring that the room-key record at the front desk
matches the keys of the actual locks, whatever it may be.

In this refined model, the Entry operation is split in two: Enter1 for the
normal case, and Enter2 for the case in which the lock is recoded. In
the other approaches, this is expressed with disjunction; in B, a non-
deterministic choice operator could be used to the same effect.

1	 REFINEMENT	hotel2

2	 REFINES	hotel1

3	 SETS
4	 	 KEY	=	{k1,k2,k3,k4}	;
5	 	 CARD	=	{c1,c2,c3}

6	 VARIABLES
7	 	 alloc,	key,	cArd,	ckey1,	ckey2,	lock,	prev,	guest

8	 INVARIANT
9	 	 key	:	POW(KEY)	&
10	 	 cArd	:	POW(CARD)	&
11	 	 ckey1	:	cArd	>->	key	&
12	 	 ckey2	:	cArd	>->	key	&
13	 	 !c.(c:	cArd	=>	ckey1(c)	/=	ckey2(c))	&
14	 	 guest	:	cArd	–>	GUEST	&
15	 	 lock	:	ROOM	>->	key	&
16	 	 prev	:	ROOM	>->	key

17	 INITIALISATION
18	 	 ANY	ks,	f		WHERE
19	 	 	 ks	:	POW(KEY)	&
20	 	 	 f	:	ROOM	>->	ks
21	 	 THEN
22	 	 	 key		:=	ks	||
23	 	 	 lock	:=	f	||
24	 	 	 prev	:=	f		||
25	 	 	 cArd,	ckey1,	ckey2,	guest,	alloc	:=	{},	{},	{},	{},	{}
26	 	 END
27	 	

fig. e.5 B model: state and initialization for refined machine.

appendix e: alternative approaches 315

1	 OPERATIONS

2	 CheckIn(g,r)	=
3	 	 PRE	g:GUEST	&	r:ROOM	THEN
4	 	 	 ANY	c,	k	WHERE
5	 	 	 	 r	:	ROOM	&	r	/:	dom(alloc)	&
6	 	 	 	 c	:	CARD		&		c	/:	cArd	&
7	 	 	 	 k	:	KEY		&		k	/:	key
8	 	 	 THEN
9	 	 	 	 ckey1(c)	:=	prev(r)		||
10	 	 	 	 ckey2(c)	:=	k		||
11	 	 	 	 guest(c)	:=	g		||
12	 	 	 	 prev(r)	:=	k		||
13	 	 	 	 key	:=	key	\/	{k}	||
14	 	 	 	 cArd	:=	cArd	\/	{c}			||
15	 	 	 	 alloc(r)	:=	g
16	 	 	 END
17	 	 END	;
18	 	
19	 Enter1(g,r)	=
20	 	 PRE	g:GUEST	&	r:ROOM	THEN
21	 	 	 ANY	c,	k	WHERE
22	 	 	 	 c:CARD	&	k:KEY	&
23	 	 	 	 c	|->	g	:	guest	&
24	 	 	 	 ckey1(c)	=	lock(r)
25	 	 	 THEN
26	 	 	 	 lock(r)	:=	ckey2(c)
27	 	 	 END
28	 	 END	;
29	 	
30	 Enter2(g,r)	=
31	 	 PRE	g:GUEST	&	r:ROOM	THEN
32	 	 	 ANY	c,	k	WHERE
33	 	 	 	 c:CARD	&	k:KEY	&
34	 	 	 	 c	|->	g	:	guest	&
35	 	 	 	 ckey2(c)	=	lock(r)
36	 	 	 THEN
37	 	 	 	 skip
38	 	 	 END
39	 	 END	;

fig. e.6 B model: operations for refined machine.

316 appendix e: alternative approaches

E.2.3 Tools for B
Two commercial tools are available for B: Atelier-B from Steria, and the
B-Toolkit from B-Core. Both focus on theorem proving and code gen-
eration, but also provide an animator for lightweight analysis.

ProB [51] is a very different tool. It offers very similar functionality to
the Alloy Analyzer; of all the tools associated with these alternative ap-
proaches, it is the only one that can generate counterexamples to asser-
tions fully automatically. B does not have a facility for defining arbitrary
assertions, so ProB focuses on checking the proof obligations that are
generated by invariants and refinement claims. Refinement is checked
over traces rather than inductively over operations, so the user need
not find an inductive invariant. ProB can also check the refinement re-
lationship between a B model and a more abstract description written
in the CSP process algebra.

E.3 OCL

OCL, the Object Constraint Language, is the constraint language of
UML. It was developed by Jos Warmer and Anneke Klepper, based on
Steve Cook and John Daniels’s Syntropy language [11] and on modeling
work done at IBM. Their book [77] provides an accessible overview. As
part of UML, the language is an Object Management Group standard;
the most recent specification is available online [57].

The early design of OCL placed less emphasis on precise semantics than
the other approaches. Many researchers, in particular those associated
with the Precise UML Group, worked to produce a formal semantics for
OCL, but since the language was already standardized, it was too late to
eliminate its complexities. So although OCL was designed in the hope
that it would be simpler than languages such as VDM and Z, it actually
ended up more complicated.

Our discussion is based on a variant of OCL designed by Mark Rich-
ters and Martin Gogolla [61, 60]. It has a formal semantics; a type sys-
tem that supports subtyping; and a powerful animator and testing tool
called USE.

When OCL was brought into the UML standard, it was viewed as an
annotation language for UML class diagrams, so it was not given its
own textual notation for declarations. This means that an OCL model,

appendix e: alternative approaches 317

according to the standard, would have to include a UML diagram for
the declarations of classes and relations—an inconvenience, especially
for small models. The USE variant of OCL includes a textual notation
for declarations, and thus overcomes this problem.

E.3.1 Basic Notions of OCL
An OCL model consists of a description of a state space (given in terms
of classes, attributes and associations), some invariants, and a collec-
tion of operations. As in VDM, operations separate pre- and postcon-
ditions, and include invariants implicitly. In addition, however, OCL
allows arbitrary predicates to be packaged, and in this respect, it has
more in common with Alloy; the idiom used in the Alloy model, with
explicit time instants, for example, can be cast fairly easily into OCL.

Like Alloy, OCL models the state with a collection of sets and relations.
Surprisingly, however, a something-to-many relation, mapping an atom
to more than one atom, is treated semantically not as a flat relation but
rather as a function to sets, resulting in a model whose style is more
reminiscent of VDM than of Alloy or Z. This gives a strong direction-
ality to the relations of OCL; they cannot be traversed backwards. An
association is thus accessed not as a single relation, but as a pair of rela-
tions derived from it called roles, one for navigation in each direction.

The multiplicity of a role is part of its type. Navigation is function ap-
plication, and results in a set or scalar depending on the multiplicity (in
contrast to Alloy, in which navigation is relational image, and always
yields a set). The advantage of this is that the type checker can detect
errors in which a navigation assumes a role to have a multiplicity in-
compatible with its declaration. The disadvantages are that multiplici-
ties behave differently from explicit constraints that say the same thing;
changing a role’s multiplicities alters its type, and may require compen-
sating changes where it is used; and conversions are needed between
sets and scalars.

OCL has no transitive closure operator. To allow a multi-step naviga-
tion through a relation, therefore, it allows predicates and functions to
be defined recursively. This brings useful expressiveness, but it has a
downside: predicates no longer have a simple logical interpretation, but
require a least fixpoint semantics. As a result, an OCL tool can’t use a
constraint solver in the style of the Alloy Analyzer or ProB, since it will
generate spurious cases corresponding to non-minimal solutions.

318 appendix e: alternative approaches

In two respects, OCL is very different from the other approaches. First,
its syntax stacks variable bindings in the style of Smalltalk, and treats
the first argument of operators as privileged. Appropriately, it has a no-
tion of context within which references to an archetypal member of a
class are implicit. Second, like an object-oriented programming lan-
guage, OCL distinguishes a class from the set of objects associated with
it. This makes reflection possible, which is useful for metamodeling, but
it also complicates the language.

The underlying datatypes of OCL are defined in library modules, which
play a similar role in OCL to the mathematical toolkit in Z. In contrast,
the basic types are built into the language in Alloy, B and VDM. This
decision has some subtle implications for the type system. For example,
unlike Alloy’s type checker, a type checker for OCL cannot exploit the
meaning of the set and relational operators, but must rely on their de-
clared type alone.

An expression’s value must belong to one of the library types. Since re-
lations are not included, this means that, in contrast to the other lan-
guages, an expression cannot denote a relation. This does not reduce
the expressiveness of the language, since arbitrary quantifications are
allowed, but it does make some constraints more verbose.

E.3.2 Sample Model in OCL
An OCL version of the hotel locking model is shown in figs. E.7 and E.8.

The first figure, E.7, shows the declarations of classes and associations.
The class Desk is included to provide a context for the state component
representing the set of issued keys. As in the Alloy model, there is only
one instance of Desk; this constraint is recorded as the invariant oneDesk.
Note the use of the expression Desk.allInstances, meaning the set of in-
stances of the class Desk; it would be illegal to write

Desk->size=1

instead because Desk denotes a class and not a set.

An association is a relation, and it may have any arity, as indicated by the
number of roles: fst and snd have two roles and are binary, for example,
whereas prev is ternary. This model follows the convention that a role of
an association a that maps to instances of class c is named c4a.

For a binary association, the two roles are just binary relations that are
transposes of one another. For a ternary relation, however, a role de-
notes a pair of binary relations, one for each possible source of a navi-

appendix e: alternative approaches 319

gation (there being two other classes involved); and, in general, for an
association with k roles, each role denotes k-1 distinct binary relations,
with the appropriate relation selected according to the context.

Given a desk d, for example, the expression d.key4prev denotes the set of
keys held at desk d as previous keys of some room; likewise d.room4prev
denote the sets of rooms that have previous keys associated with them
at desk d.

Roles give only a simplified view of higher-arity relations, which is not
fully expressive. If there were more than one desk, one could not write
an expression like Alloy’s d.prev[r] for the previous key of room r at
desk d. Fortunately, there is only a single desk, so the problem does not
arise. When a truly higher-arity relation is needed in OCL, a different
approach must be used, in which the relation is represented explicitly
as a set of tuples. Richters explains this in section 4.9.2 of his thesis [60].

The second figure, E.8, shows the declaration of the class Room, and the
definitions of the operations for checking in and entering a room. The
operations are declared within the context of the Room class; this gives
each an implicit argument that can be referred to by the keyword self,
and which, unlike Alloy’s this, can be omitted. The expression

self.key4prev

on line 5, for example, denoting the previous key associated with the
room in context, could be written instead as just key4prev—a shorthand
not available in Alloy, since it would denote the relation as a whole.

Each operation has preconditions and postconditions that can be bro-
ken into separate, named clauses to allow a tool to give feedback about
which clause is violated when checking a test case against the model. In
a postcondition, roles and attributes that refer to values in the prestate
are marked with the suffix @pre. The constraint

g.card4cards	=	g.card4cards@pre->including(c)	and

for example, says that the set of cards associated with the guest g in the
poststate is the set in the prestate with the card c added.

The constraint

self.key4prev=Set{c.key4snd}

on line 20 in the postcondition of checkin says that, in the poststate, the
previous key is recorded to be the second key of the card. The Set key-
word lifts the element c.key4snd to a set. You might think it’s not nec-

320 appendix e: alternative approaches

1	 model	hotel

2	 class	Key	end
3	 class	Card	end
4	 class	Guest	end

5	 class	Desk	end
6	 constraints
7	 context	Desk	inv	oneDesk:	Desk.allInstances->size=1

8	 association	fst	between
9	 	 Card	[*]	role	card4fst
10	 	 Key	[1]	role	key4fst
11	 end

12	 association	snd	between
13	 	 Card	[*]	role	card4snd
14	 	 Key	[1]	role	key4snd
15	 end

16	 association	key	between
17	 	 Room	[*]	role	room4key
18	 	 Key	[1]	role	key4key
19	 end

20	 association	prev	between
21	 	 Desk	[*]	role	desk4prev
22	 	 Room	[*]	role	room4prev
23	 	 Key	[0..1]	role	key4prev
24	 end

25	 association	issued	between
26	 	 Desk	[*]	role	desk4issued
27	 	 Key	[*]	role	key4issued
28	 end

29	 association	cards	between
30	 	 Guest	[*]	role	guest4cards
31	 	 Card	 [*]	role	card4cards
32	 end

fig. e.7 OCL model: state declaration.

appendix e: alternative approaches 321

1	 class	Room
2	 operations

3	 	 init()
4	 	 post	prev_eq_key:
5	 	 	 self.key4prev	=	Set{self.key4key}
6	 	 post	issued_eq_room_key:
7	 	 	 Desk.allInstances.key4issued	=	Room.allInstances.key4key
8	 	 post	no_cards:
9	 	 	 Card.allInstances.guest4cards->isEmpty

10	 	 checkin(g:Guest)
11	 	 pre	key_exists:
12	 	 	 Key.allInstances->exists(k|	Desk.allInstances.key4issued->excludes(k))
13	 	 post	fst_snd_ok_cards_issued_prev_updated:
14	 	 	 Card.allInstances->exists(c|
15	 	 	 	 self.key4prev->includes(c.key4fst)	and
16	 	 	 	 Desk.allInstances.key4issued->excludes(c.key4snd)	and
17	 	 	 	 g.card4cards	=	g.card4cards@pre->including(c)	and
18	 	 	 	 Desk.allInstances->forAll(d|
19	 	 	 	 	 d.key4issued	=	d.key4issued@pre->including(c.key4snd))	and
20	 	 	 	 self.key4prev	=	Set{c.key4snd})
21	 	 post	key_unchanged:
22	 	 	 self.key4key@pre	=	self.key4key

23	 	 enter(g:Guest)
24	 	 pre	key_matches:
25	 	 	 g.card4cards->exists(c|
26	 	 	 	 let	k	=	key4key	in	c.key4snd	=	k	or	c.key4fst	=	k
27	 	 post	key_updated:
28	 	 	 g.card4cards->exists(c|
29	 	 	 	 let	k	=	key4key	in
30	 	 	 	 	 (c.key4snd	=	k	and	self.key4key	=	self.key4key@pre)	or
31	 	 	 	 	 (c.key4fst	=	k	and	self.key4key	=	c.key4snd))
32	 	 post	issued_unchanged:
33	 	 	 Desk.allInstances->forAll(d|d.key4issued@pre	=	d.key4issued)
34	 	 post	prev_unchanged:
35	 	 	 Room.allInstances->forAll(r|
36	 	 	 	 self.desk4prev@pre	=	self.desk4prev
37	 	 	 	 and	self.key4prev@pre	=	self.key4prev)
38	 	 post	cards_unchanged:
39	 	 	 Card.allInstances->forAll(c|c.guest4cards@pre	=	c.guest4cards)

40	 end

fig. e.8 OCL model: operations.

322 appendix e: alternative approaches

essary here, since the roles key4prev and key4snd have multiplicities of
[0..1] and [1] respectively, which are type compatible. For a ternary re-
lation, however, the multiplicity of a role r does not indicate the size of
the set that x.r might represent. Rather, it indicates how many instances
of that type are associated with a combination of instances of the other
types. In this case, if there were multiple desks, self.key4prev might con-
tain more than one key, despite the multiplicity, so any value equated to
it must be a set and not a scalar.

E.3.3 Tools for OCL
Many tools are available for OCL. Some, such as Octopus (from Klasse
Objecten, the company founded by Anneke Kleppe), are standalone
tools; others are components in larger tools for model-driven devel-
opment, such as the OCL component of Borland’s Together Designer.
Typical features are syntax and type checking, interpretation of OCL
constraints over test cases, and generation of code in Java, SQL, etc,
from OCL expressions.

Fewer tools support design-time analysis. The most powerful in this
class seems to be the USE tool from the University of Bremen [75]. It
offers an environment in which a modeler can construct test cases and
evaluate OCL expressions and constraints over them. Recently, a facil-
ity for enumerating snapshots with user-provided generators has been
added [20], which allows an exhaustive search over a finite space of cas-
es in the style of Alloy. Its user interface integrates OCL with the graphi-
cal object model of UML, supporting visual editing of declarations and
diagrammatic display of snapshots and executions.

With the USE tool, Martin Gogolla was able to simulate scenarios and
uncover flaws, including the initialization error in the first variant of the
Alloy model.

E.4 VDM

VDM stands for the “Vienna Development Method,” so called because
it grew out of work at IBM’s Vienna Laboratory on programming lan-
guage definition in the 1970’s. The method, developed by Cliff Jones and
Dines Bjørner, comprises a specification language and an approach to
refining specifications into code. Many of the basic principles and ideas
of logic-based specification first appeared in VDM.

appendix e: alternative approaches 323

Nowadays, the term “VDM” usually refers to the language, for which
the classic reference is Jones’s book [43]. The latest version of the lan-
guage, VDM-SL (the VDM Specification Language), was standardized
by ISO in the 1990’s [49]; it has two syntaxes, one ASCII-based (used by
most VDM tools), and one using special mathematical symbols.

VDM has been used in a variety of industrial settings; recent applica-
tions have included the development of electronic trading systems, se-
cure smart cards and the Dutch flower auction system.

Two recent books explain the process of modeling in VDM; the first
[18] uses the standardized language, VDM-SL, and the second [19] uses
VDM++, an extension that includes object-oriented features and con-
currency. Both books include case studies, and stress the use of light-
weight tool technology for aiding dialog between engineers and domain
experts. A paper by Jones discusses the rationale behind the design of
VDM [44].

E.4.1 Basic Notions of VDM
A VDM specification describes a state machine comprising a set of
states and a collection of operations. The states are given by a top-level
declaration and auxiliary declarations to introduce any composite types
that it uses. Each declaration can be accompanied by an invariant.

Operations have separate pre- and postconditions. Each operation
must be implementable, meaning that the postcondition admits at least
one poststate for each prestate satisfying the precondition. If an opera-
tion is written in an explicit style (that is, with a postcondition consist-
ing of assignments to poststate components), it will be implementable
by construction. The invariants, as in Alloy, OCL and Z, are implicitly
included in the pre- and postconditions. Explicit operations must be
preserve invariants.

The pre- and postcondition of one operation can be used in another by
operation quotation, which treats the operation much like a pair of Al-
loy predicates. Validation conjectures play the role of Alloy’s assertions,
and are formulated in a tool-specific language extension, rather than in
the VDM language itself.

In contrast to Alloy, B, OCL and Z (and in common with languages
aimed more at describing code interfaces, such as JML [50] and the
Larch interface languages [25]), VDM has frame conditions indicating
which state variables may be read or written by an operation. A frame
condition can make an operation much more succinct (since there is

324 appendix e: alternative approaches

no need to mention components that don’t change), and may make it
easier to read at a glance. The downside is that frame conditions assume
a more restrictive form of specification than languages such as Alloy
and Z permit; you can’t, for example, add redundant components to the
state that are defined in terms of other components without changing
all the operations.

E.4.2 Sample Model in VDM
A VDM version of the hotel locking model is shown in two parts: the
type declarations in fig. E.9, and the operations in fig. E.10.

The type declarations begin with the declaration of Key, Room and Guest
as “token” types, meaning that they denote sets of uninterpreted atoms.
In contrast, Card and Desk are declared as record types. The special type
Hotel corresponding to the global state is also a record type. Each type
may be followed by an invariant; that of Desk (line 11), for example, says
that the set of keys associated with rooms currently is a subset of the set
of keys previously issued.

Alloy, in contrast, has no composite types (except for relations). The use
of record types has benefits and drawbacks. The primary benefit is that
a constructor can be used to create a fresh value (as in line 8), where
Alloy requires a set comprehension or existential quantifier (as in line
2 of fig. E.2). The drawbacks are extra notation (note VDM’s dot in c.fst
but the brackets in locks(r)) and the problems they create for analysis.

Records can often be represented with signatures in Alloy, but the lack
of constructors lies at the heart of the unbounded universals problem
described in section 5.3. A record has no identity distinct from its value,
so the VDM model does not distinguish two cards held by different
guests that happen to have the same keys.

The more general, higher-order nature of VDM can be seen in the state
invariant on line 16. The formula

dunion	{{c.fst,	c.snd}	|	c	in	set	dunion	rng	h.guests}
	 subset	h.desk.issued

says that the first and second keys on cards held by guests must be re-
corded as issued at the desk. Because the expression h.guests is a func-
tion from guests to sets of cards, its range, rng h.guests, is a set of sets,
which must be flattened by taking a distributed union before determin-
ing whether card c belongs. In Alloy, sets of sets are not expressible, and
this constraint would be written instead as

appendix e: alternative approaches 325

all	t:	Time	|	Guest.cards.t.(fst	+	snd)	in	Desk.issued.t

The time variable t plays the role of the state variable h in the VDM
specification. Its placement is an artifact of the idiom chosen, and it
would precede rather than follow the field names if the state were mod-
eled as a signature instead, as in the memory or media asset examples
of chapter 6.

An operation has a listing of arguments and their types, frame condi-
tions, a precondition and a postcondition. Note how frame conditions
shorten their associated postcondition; in Enter, for example, because
only the locks components is writeable, there is no need for equalities
on the other components, as in lines 17 and 18 of the Alloy model of
fig. E.2.

The explicit precondition makes it easier to see when an operation ap-
plies, but it can make the operation more verbose: note how the pre-
condition of Enter (line 17) is repeated in the postcondition, since the
existential quantifier cannot span both.

VDM’s pre- and postconditions are just logical formulas, like the body
of an Alloy predicate. Unlike Alloy, and like the other approaches (al-
though to a lesser extent Z), VDM assumes a particular state machine
idiom, and provides special syntax to support it. The state declaration,
unlike the other type declarations, defines a mutable structure, whose
components have separate values in the pre- and poststate of an opera-
tion. The values of a component c in the pre- and poststates are referred
to as c~ and c respectively. The special symbol & separates a quantifier’s
binding from its body.

This is convenient but less flexible than Alloy’s approach. All mutations
are confined to the top-level components of the state; you could not, for
example, make cards mutable in order to model modifications to exist-
ing cards by hackers (as you could in Alloy by adding a time column
to the relations of Card). VDM++, however, allows all structures to be
mutable.

VDM distinguishes sets from relations. So where Alloy would use the
single operator + for all unions, VDM uses union on sets and munion
on maps. Being higher-order, it requires set former brackets to distin-
guish maps from tuples and sets from their elements. The initialization
condition on line 21, for example, equates the range of the mapping
from guests to sets of cards to {{}}—the set containing just the empty
set—and writing {} here instead would mean something different. Simi-

326 appendix e: alternative approaches

larly, the expressions used to extend the maps guests and locks require set
brackets for one ({g |-> {new_c}}) but not the other (as in {r |-> new_k}).

To apply an animator (such as that of the VDMTools) to an operation, it
must be written in an explicit form. An example, for the Checkin opera-
tion, is shown in fig. E.11. The existential quantifier has been replaced
by a let statement; the constraints of the postcondition have been re-
placed by assignments; and the frame condition is no longer necessary.
This notation is very similar to B.

1	 types
2	 	 Key	=	token;
3	 	 Room	=	token;
4	 	 Guest	=	token;

5	 	 Card	::
6	 	 	 fst	:	Key
7	 	 	 snd	:	Key;
8	 	 Desk	::
9	 	 	 issued	:	set	of	Key
10	 	 	 prev	:	map	Room	to	Key
11	 	 inv	d	==	rng	d.prev	subset	d.issued;

12	 	 state	Hotel	of
13	 	 	 desk	:	Desk
14	 	 	 locks	:	map	Room	to	Key
15	 	 	 guests	:	map	Guest	to	set	of	Card
16	 	 inv	h	==
17	 	 	 dom	h.desk.prev	subset	dom	h.locks	and
18	 	 	 dunion	{{c.fst,	c.snd}	|	c	in	set	dunion	rng	h.guests}
19	 	 	 	 subset	h.desk.issued
20	 	 init	h	==	h.desk.issued	=	rng	h.locks	and
21	 	 	 h.desk.prev	=	h.locks	and	rng	h.guests	=	{{}}
22	 end

fig. e.9 VDM model: type declarations.

appendix e: alternative approaches 327

1	 operations
2	 	 CheckIn(g:Guest,r:Room)
3	 	 	 ext	wr	desk	:	Desk
4	 	 	 	 wr	guests	:	map	Guest	to	set	of	Card
5	 	 	 pre	r	in	set	dom	desk.prev
6	 	 	 post	exists	new_k:Key	&
7	 	 	 	 new_k	not	in	set	desk~.issued	and
8	 	 	 	 let	new_c	=	mk_Card(desk~.prev(r),new_k)	in
9	 	 	 	 	 desk.issued	=	desk~.issued	union	{new_k}	and
10	 	 	 	 	 desk.prev	=	desk~.prev	++	{r	|->	new_k}	and
11	 	 	 	 	 if	g	in	set	dom	guests
12	 	 	 	 	 	 then	guests	=	guests~	++	{g	|->	guests~(g)	union	{new_c}}
13	 	 	 	 	 	 else	guests	=	guests~	munion	{g	|->	{new_c}};

14	 	 Enter(r:Room,g:Guest)
15	 	 	 ext	wr	locks	:	map	Room	to	Key
16	 	 	 	 rd	guests	:	map	Guest	to	set	of	Card
17	 	 	 pre	r	in	set	dom	locks	and	g	in	set	dom	guests	and
18	 	 	 	 exists	c	in	set	guests(g)	&	c.fst	=	locks(r)	or	c.snd	=	locks(r)
19	 	 	 post	exists	c	in	set	guests(g)	&
20	 	 	 	 c.fst	=	locks(r)	and	locks	=	locks~	++	{r	|->	c.snd}	or
21	 	 	 	 c.snd	=	locks(r)	and	locks	=	locks~;

fig. e.10 VDM model: Operations expressed implicitly.

1	 	 CheckInExpl:	Guest	*	Room	==>	()
2	 	 CheckInExpl(g,r)	==
3	 	 	 let	new_k:Key	be	st	new_k	not	in	set	desk.issued	in
4	 	 	 let	new_c	=	mk_Card(desk.prev(r),new_k)	in	(
5	 	 	 	 desk.issued	:=	desk.issued	union	{new_k};
6	 	 	 	 desk.prev	:=	desk.prev	++	{r	|->	new_k};
7	 	 	 	 guests	:=	if	g	in	set	dom	guests
8	 	 	 	 	 then	guests	++	{g	|->	guests(g)	union	{new_c}}
9	 	 	 	 	 else	guests	munion	{g	|->	{new_c}}
10)
11	 	 	 pre	r	in	set	dom	desk.prev;

fig. e.11 VDM model: Operations expressed explicitly.

328 appendix e: alternative approaches

E.4.3 Tools for VDM
Under the guidance of Peter Gorm Larsen, IFAD—a Danish company
that offered VDM consulting in the 1990’s—developed VDMTools, a
toolkit for both VDM-SL and VDM++. It included a type checker and
theorem prover, and, for an executable subset of VDM, a facility for
simulating and testing specifications, and a code generator. The tool-
kit is now owned by CSK Corporation of Japan. New tool support for
VDM++ is being developed under the Overture open source initiative.

E.5 Z

Z was developed at Oxford University in the 1980’s. It has been very
influential in education and research, and has been applied successfully
on several large projects, notably by Oxford University and IBM on the
CICS system, in a series of projects by Praxis Critical Systems, and to
the security verification of the Mondex electronic purse developed by
NatWest Bank (the first ever product certified to ITSEC Level 6) [71,
70]. Z’s clean and simple semantic foundation was an inspiration for the
design of Alloy.

Although the language has been standardized by ISO [32], the version
described in Mike Spivey’s book [67] continues to be the most popular.
Many books have been written about Z, including textbooks [42, 58, 78,
79], case study collections [28], and a guide to style [3].

E.5.1 Basic Notions of Z
Z, like Alloy, is at heart just a logic, augmented with some syntactic
constructs to make it easy to describe software abstractions. In Al-
loy, these constructs are the signature, for packaging declarations, and
facts/predicates/functions for packaging constraints. In Z, the same
construct—the schema is used both to package declarations and con-
straints. The language of schemas, called the schema calculus, is rich
enough to support a wide variety of idioms.

In practice, though, a particular idiom—called variously the “Oxford
style,” the “IBM style,” and the “established strategy” [3]—has been ad-
opted in almost all Z specifications since the earliest days. A collection
of syntactic conventions have grown around it, and have become a de
facto part of the language itself. The operator for combining operations
by sequential composition, for example, assumes the use of this idiom;
without it, the operator will not have the expected meaning.

appendix e: alternative approaches 329

Z, unlike B, does not have a built-in notion of refinement, and indeed
many Z users view it as a system modeling language, and have no intent
to prove conformance of their code to the model. There is, however, a
well-established theory of refinement for Z, and the language is well-
suited to developments by stepwise refinement. Woodcock’s book [78]
is an accessible introduction to this approach.

The sample model shown here is the first, most abstract, model in a
development by refinement. Like the abstract B model of fig. E.4, it de-
termines entry to the room by examining the room roster; in a subse-
quent refinement (not shown here), entry is determined by keys and
locks alone. The abstract Z model does not, however, omit mention of
keys and locks entirely: the recoding key on the card is selected on en-
try (rather than when checking in). The refinement will move this non-
deterministic choice backwards in time to the checkin, with the same
justification used for the example of section 6.4.6.

A Z specification is built as a series of schema declarations. A decla-
ration has two parts: a series of variable declarations, and a predicate
constraining them. When a reference is made to a previously declared
schema, both its variable declarations and predicate are incorporated
implicitly. A schema representing state typically builds on previous
state schemas by adding new components and constraining the state
further with additional invariants. A schema representing an operation
may incorporate state schemas for the pre- and poststates, or it may
extend a previous operation schema, adding constraints to make its be-
haviour more specific.

Because incorporating a schema brings the variables it declares into
scope, there is often no explicit declaration for a variable that appears
in a schema’s predicate. As a result, Z specifications can be very suc-
cinct—sometimes mysteriously so. Exactly the same power, with the
same potential for succinctness and obscurity, is found in the inheri-
tance mechanisms of object-oriented programming languages, and in
Alloy’s signature extension mechanism (which was, incidentally, de-
signed explicitly to support schema-style structuring).

In the Oxford style, state invariants are declared with the state declara-
tions and are thus incorporated implicitly into operations, as in VDM,
and in marked contrast to B, where invariants must be shown to be
preserved by operations. Preconditions of operations are not separated
from postconditions. It is regarded as good style for the precondition
to appear explicitly in the operation schema, but it is not necessary.
In place of the implementability check of VDM, a Z specifier derives

330 appendix e: alternative approaches

a precondition from an operation schema and compares it to the one
expected.

Sets and relations are the predominant datatypes in Z. In this respect,
Z is similar to B—which is not surprising, since B’s inventor, Jean-Ray-
mond Abrial, was one of the early developers of Z (and had worked
before that on database semantics). For both Z and B, sets are seen as
fundamental and relations as derived; Z is so named because of its roots
in ZF (Zermelo-Fraenkel) set theory. Alloy is also based on sets and
relations, but its logic is more influenced by the relational formalisms
of Tarski’s calculus [72] and Codd’s relational database model [10], with
sets regarded as a special case of relations.

Like VDM, however, Z does include record types. The same schema
construct that is used syntactically for grouping declarations together
can be used semantically to declare a ‘schema type’, whose values are
bindings of values to field names. Schema types are more powerful than
Alloy’s signatures, because they provide constructors. Unlike signatures,
however, schemas have no subtyping. One schema can be defined as
an extension of another schema, but the types of the two schemas are
unrelated. For example, if you declared a schema for a file system ob-
ject, and extended it into two other schemas corresponding to files and
folders, you would not be able to insert an instance of the file or folder
schema into a set or relation declared over file system objects.

Z has a distinctive appearance, with boxes drawn around schemas, and
its own collection of mathematical symbols. Here we use the “horizon-
tal form,” which, although less elegant, can be produced without special
layout tools.

E.5.2 Sample Model in Z
A Z specification of the hotel locking problem is shown in figs. E.12,
E.13 and E.14.

The first figure (E.12) shows the declaration of the state and initializa-
tion. Guests, keys and rooms are declared as given sets: uninterpreted
sets of atoms that become the basis for type checking. A global variable
initkeys is declared that represents the function associating room locks
with the initial values of their keys. A Msg datatype is declared to repre-
sent the possible outcomes of operations.

Hotel is our first schema declaration. It introduces 3 variables that will
represent the state components of the system: firsttime, a set of rooms;
key, a function from rooms to keys (representing the keys held in their

appendix e: alternative approaches 331

locks in a particular state); and guest, a function from rooms to guests
(representing the occupancy roster). The kind of arrow indicates the
multiplicities: that key is a partial injection, and guest is a partial func-
tion.

This model, because it is the first in a development by refinement, will
describe exactly when an entry should be permitted, and when a lock
should be rekeyed; a later refinement would describe the mechanism by
which entry is determined by checking keys. This explains the firsttime
component, which did not appear in the Alloy model, but is used to
mark the set of rooms which, when subsequently entered, should have
their locks recoded (since a new guest will be entering for the first time).

[Guest,	Key,	Room]

initkeys:	Room	↣	Key;

Msg	::=	okay
	 |	room_already_allocated
	 |	guest_already_registered
	 |	room_not_allocated
	 |	wrong_guest
	 |	key_not_fresh

Hotel	↣	[
	 firsttime:	↣	Room
	 key:	Room	↣	Key
	 guest:	Room	↣	Guest
]

InitHotel	↣	[
	 Hotel’
	 |
	 firsttime’	=	↣
	 key’	=	initkeys
	 guest’	=	↣
]
	

fig. e.12 State and initialization in Z.

332 appendix e: alternative approaches

InitHotel, the second schema, describes the initialization. Unlike Hotel
which included only variable declarations, this schema has both dec-
larations and a predicate. The declarations are those of Hotel, imported

1	 Checkin0	↣	[
2	 	 Δ	Hotel
3	 	 g?:	Guest
4	 	 r?:	Room
5	 	 |
6	 	 r?	↣	dom	guest
7	 	 g?	↣	ran	guest
8	 	 firsttime’	=	firsttime	↣	{r?}
9	 	 key’	=	key
10	 	 guest’	=	guest	↣	{r?	↣	g?}
11]

12	 EnterFst	↣	[
13	 	 Δ	Hotel
14	 	 g?:	Guest
15	 	 r?:	Room
16	 	 k?:	Key
17	 	 |
18	 	 r?	↣	firsttime
19	 	 r?	↣	dom	guest
20	 	 guest	r?	=	g?
21	 	 k?	↣	ran	key
22	 	 firsttime’	=	firsttime	\	{r?}
23	 	 key’	=	key	↣	{r?	↣	k?}
24	 	 guest’	=	guest
25]

26	 EnterSnd	↣	[
27	 	 Ξ	Hotel
28	 	 g?:	Guest
29	 	 r?:	Room
30	 	 |
31	 	 r?	↣	dom	guest
32	 	 guest	r?	=	g?
33	 	 r?	↣	firsttime
34]

fig. e.13 Checkin and Enter operations in Z.

appendix e: alternative approaches 333

by mentioning the schema’s name. Notice the prime mark appended to
the name. This is called decoration; its effect is to include not exactly
the declarations of Hotel, but versions in which each variable is likewise
primed. These primed variables are used in Z to refer to the values of
state components after execution of an operation (in this case, the ini-
tialization).

A schema predicate is just a constraint, formed by conjoining the con-
straints on each line. Each line’s constraint is a simple mathematical
formula, with the equals sign denoting equality (and not assignment).
So there is no semantic significance to the ordering of the terms in these
equations, and we could reverse each equation without changing its
meaning. This specification has been written, however, in a form that
suggests how it might be executed, with the primed variables on the
left. This allows it to be animated using a tool such as Jaza. The same
rationale explains why the initialization equates keys’ to the previously
declared function initkeys, just as the corresponding component was
initialized in the B model (on line 23 of fig. E.5). A more traditional Z
style would simply not mention keys’, leaving its value unconstrained.

The second figure (E.13) shows the checkin and entry operations for
normal cases; the exceptional cases are described in separate operations
in the next figure. There are three schemas corresponding to checking
in, and two forms of entry—one which recodes the lock, and one which
does not.

The first two, Checkin0 and EnterFst, mention Δ Hotel in their declarations.
This is a schema, defined implicitly by convention, that includes Hotel
and Hotel’, thus introducing standard and primed versions of each state
variable, to represent the state components before and after execution.
The third schema, EnterSnd, mentions Ξ Hotel. This refers to a similar
schema, also including Hotel and Hotel’, but additionally a constraint
equating each state variable to its primed version. Its use, therefore, in-
dicates an operation that has no effect on the state.

Each operation also declares some variables decorated with question
marks. By convention, these represent input arguments; semantically,
they are no different from the variables representing the state compo-
nents. When an operation schema is used elsewhere, these arguments
are bound by a syntactic substitution that replaces every occurrence of
an argument variable in the schema with a variable name from the new
context. In comparison to the explicit parameterization of Alloy, this
can be a bit awkward: an expression cannot be substituted for a variable,
so if no variable already exists for the actual argument, it must be de-

334 appendix e: alternative approaches

clared with an existential quantifier. On the other hand, when the actual
and formal arguments have the same name, no substitution is necessary
and the resulting text is uncluttered by argument lists.

Z does not distinguish pre- and postconditions syntactically, and there
is no need to make preconditions explicit at all. It is regarded as good
style to list preconditions in full, however, above the constraints of the
postcondition. The precondition of Checkin0, for example, is that r? is
not in the domain of guest, and g? is not in its range—that is, the room
requested is not already occupied, and the guest is not already assigned
to another room. This stylistic guideline is not generally checkable by
simple syntactic means, since the explicit precondition might admit
states for which the postcondition cannot be satisfied, so that the actual
precondition is stronger. A theorem asserting that the operation has the
expected precondition can be formulated. For Checkin0, this theorem is:

Success	↣	[m!:	Msg	|		 m!	=	okay]

EnterRoomNotAllocated	↣	[
	 Ξ	Hotel
	 r?:	Room
	 m!:	Msg
	 |
	 r?	↣	dom	guest
	 m!	=	room_not_allocated
]

EnterWrongGuest	↣	[
	 Ξ	Hotel
	 g?:	Guest
	 r?:	Room
	 m!:	Msg
	 |
	 r?	↣	dom	guest
	 guest	r?	≠	g?
	 m!	=	wrong_guest
]

Enter	↣	EnterFst	↣	Success	↣	EnterSnd	↣	Success	↣
	 EnterRoomNotAllocated	↣	EnterWrongGuest

fig. e.14 Variant operations in Z.

appendix e: alternative approaches 335

Theorem	preCheckin0
	 ↣	Hotel;	g?:	Guest;	r?:	Room	|
	 	 r?	↣	dom	guest	↣	g?	↣	ran	guest	∙	pre	Checkin0

This kind of theorem is not expressible in Alloy, as explained in section
5.3. Unintentional overconstraint is mitigated instead by simulating the
operation.

The operation predicates are unsurprising. Checkin0, for example, adds
to the guest relation a mapping from r? to g?; EnterFst recodes the lock
by overriding the key relation with a mapping from r? to the new key k?.
Note that, as in Alloy and OCL, a state variable that is unmentioned is
unconstrained, so if a component is unchanged, an explicit equality is
needed (as in line 24).

The third figure, E.14, shows how the behavior of these operations is
augmented to cover exceptional cases. The schema Success simply intro-
duces an output argument m! and equates it to the message okay. The
next two schemas specify the conditions under which an entry should
be regarded as impermissible, because the room has not been allocated
to a guest at all, or because the guest attempting entry is not the legiti-
mate occupant. These conditions are expressed as preconditions, and
are accompanied by postconditions that constrain the value of the mes-
sage accordingly.

Finally, a schema is declared that brings the different cases together: En-
ter is an operation that describes all the scenarios of attempted entry to
a room. Note its assembly using just disjunction and conjunction. This
simplicity is a consequence of operations being no more than logical
formulas. Alloy took this idea from Z, and thus supports the same kind
of structuring.

E.5.3 Tools for Z
Most tool support for Z has focused on theorem proving. The most
widely used proof tools are ProofPower (from Lemma 1 Ltd), and Z/
Eves, a front-end to the Eves theorem prover (from ORA Canada). The
sample model was analyzed with Z/Eves. The tool can calculate precon-
ditions and perform “domain checks” (which ensure that partial func-
tions are never applied outside their domains), as well as performing
general theorem proving. Although many steps in a proof are executed
automatically, complex theorems tend to require guidance from an ex-
perienced user.

336 appendix e: alternative approaches

A number of animators have been built for Z. The sample model was
tested using Jaza [76], an animator developed by Mark Utting at the
University of Waikato. Jaza can execute operations written in an explicit
style, and can do a certain amount of constraint solving over small do-
mains. The entire sample model above can be handled in Jaza. We noted
how the initialization, for example, assigns the global function initkeys
to keys’ rather than leaving it unconstrained; this allows the initializa-
tion to be executed given a value of initkeys by the user. Like the USE
tool and the animator of the VDMTools, Jaza can evaluate expressions,
check given states against invariants and transitions against operations,
and can simulate an execution trace with the user selecting operations
and providing input arguments.

