1: Introduction

Software is built on abstractions. Pick the right ones, and programming
will flow naturally from design; modules will have small and simple in-
terfaces; and new functionality will more likely fit in without extensive
reorganization. Pick the wrong ones, and programming will be a series
of nasty surprises: interfaces will become baroque and clumsy as they
are forced to accommodate unanticipated interactions, and even the
simplest of changes will be hard to make. No amount of refactoring,
bar starting again from scratch, can rescue a system built on flawed
concepts.

Abstractions matter to users too. Novice users want programs whose
abstractions are simple and easy to understand; experts want abstrac-
tions that are robust and general enough to be combined in new ways.
When good abstractions are missing from the design, or erode as the
system evolves, the resulting program grows barnacles of complexity.
The user is then forced to master a mass of spurious details, to develop
workarounds, and to accept frequent, inexplicable failures.

The core of software development, therefore, is the design of abstrac-
tions. An abstraction is not a module, or an interface, class, or method;
it is a structure, pure and simple—an idea reduced to its essential form.
Since the same idea can be reduced to different forms, abstractions are
always, in a sense, inventions, even if the ideas they reduce existed be-
fore in the world outside the software. The best abstractions, however,
capture their underlying ideas so naturally and convincingly that they
seem more like discoveries.

The process of software development should be straightforward. First,
you design the abstractions, from a careful consideration of the prob-
lem to be solved and its likely future variants. Then you develop its
embodiments in code: the interfaces and modules, data structures and
algorithms (or in object-oriented parlance, the class hierarchy, datatype
representations, and methods).

Unfortunately, this approach rarely works. The problem, as Bertrand
Meyer once called it, is wishful thinking. You come up with a collection
of abstractions that seem to be simple and robust. But when you imple-
ment them, they turn out to be incoherent and perhaps even inconsis-

watermarked.indd 1 @ 12/5/05 1:43:39 PM



2 INTRODUCTION

tent, and they crumble in complexity as you attempt to adapt them as
the code grows.

Why are the flaws that escaped you at design time so blindingly obvious
(and painful) at coding time? It is surely not because the abstractions
you chose were perfect in every respect except for their realizability
in code. Rather, it was because the environment of programming is so
much more exacting than the environment of sketching design abstrac-
tions. The compiler admits no vagueness whatsoever, and gross errors
are instantly revealed by executing a few tests.

Recognizing the advantage of early application of tools, and the risk of
wishful thinking, the approach known as “extreme programming” [4]
eliminates design as a separate phase altogether. The design of the soft-
ware evolves with the code, kept in check by the rigors of type checking
and unit tests.

But code is a poor medium for exploring abstractions. The demands of
executability add a web of complexity, so that even a simple abstraction
becomes mired in a bog of irrelevant details. As a notation for express-
ing abstractions, code is clumsy and verbose. To explore a simple global
change, the designer may need to make extensive edits, often across
several files. And pity the reviewer who has to critique design abstrac-
tions by poring over a code listing.

An alternative approach is to attack the design of abstractions head-on,
with a notation chosen for ease of expression and exploration. By mak-
ing the notation precise and unambiguous, the risk of wishful think-
ing is reduced. This approach, known as formal specification, has had
a number of major successes. Praxis, a British company that develops
critical systems using a combination of formal specification and static
analysis, offers a warranty on its products, boasts a defect rate an order
of magnitude lower than the industry average, and achieves this level of
quality at a comparable cost.

Why isn’t formal specification used more widely then? I believe that two
obstacles have limited its appeal. The notations have had a mathemati-
cal syntax that makes them intimidating to software designers, even
though, at heart, they are simpler than most programming languages. A
second and more fundamental obstacle is a lack of tool support beyond
type checking and pretty printing. Theorem provers have advanced dra-
matically in the last 20 years, but still demand more investment of effort
than is feasible for most software projects, and force an attention to
mathematical details that don’t reflect fundamental properties of the
abstractions being explored.

watermarked.indd 2 @ 12/5/05 1:43:39 PM



INTRODUCTION 3

This book presents a new approach. It takes from formal specification
the idea of a precise and expressive notation based on a tiny core of
simple and robust concepts, but it replaces conventional analysis based
on theorem proving with a fully automatic analysis that gives immedi-
ate feedback. Unlike theorem proving, this analysis is not “complete”:
it examines only a finite space of cases. But because of recent advances
in constraint-solving technology, the space of cases examined is usually
huge—billions of cases or more—and it therefore offers a degree of cov-
erage unattainable in testing.

Moreover, unlike testing, this analysis requires no test cases. The user
instead provides a property to be checked, which can usually be ex-
pressed as succinctly as a single test case. A kind of exploration there-
fore becomes possible that combines the incrementality and immediacy
of extreme programming with the depth and clarity of formal specifica-
tion.

This volume introduces the key elements of the approach: a logic, a lan-
guage, and an analysis:

The logic provides the building blocks of the language. All structures
are represented as relations, and structural properties are expressed
with a few simple but powerful operators. States and executions are
both described using constraints (“formulas” to the logician, and
“boolean expressions” to the programmer), allowing an incremen-
tal approach in which behavior can be refined by adding new con-
straints.

The language adds a small amount of syntax to the logic for structur-
ing descriptions. To support classification, and incremental refine-
ment, it has a flexible type system that has subtypes and unions, but

requires no downcasts. A simple module system allows generic dec-
larations and constraints to be reused in different contexts.

The analysis is a form of constraint solving. Simulation involves
finding instances of states or executions that satisfy a given prop-
erty. Checking involves finding a counterexample—an instance that
violates a given property. The search for instances is conducted in a
space whose dimensions are specified by the user in a “scope;” which
assigns a bound to the number of objects of each type. Even a small
scope defines a huge space, and thus often suffices to find subtle
bugs.

This book is aimed at software designers, whether they call them-
selves requirements analysts, specifiers, designers, architects, or pro-

watermarked.indd 3 @ 12/5/05 1:43:40 PM



4 INTRODUCTION

grammers. It should be suitable for advanced undergraduates, and for
graduate students in professional and research masters programs. No
prior knowledge of specification or modeling is assumed beyond a high-
school-level familiarity with the basic notions of set theory. Neverthe-
less, it is likely to appeal more to readers with some experience in soft-
ware development, and some background in modeling.

Throughout the book, I use the term “model” for a description of a soft-
ware abstraction. It’s not ideal, because a software abstraction need not
be a “model” of anything. But it’s shorter than “description,” and has
come to have a well established (and vague!) usage.

To keep the text short and to the point, I've relegated discussions of
trickier points and asides to question-and-answer sections that are in-
terspersed throughout the text. For the benefit of researchers, I've used
these sections also to explain some of the rationale behind the Alloy
language and modeling approach.

In the book’s appendices you'll find a series of exercises designed to help
develop modeling and analysis skills; a reference manual for the Alloy
language; a summary of the semantics of the logic; and a comparison of
Alloy to some well-known alternatives.

There’s no better way to learn modeling than to do it. As you read the
book, I recommend that you try out the examples for yourself, and ex-
periment to see the effects of changes.

The Alloy Analyzer is freely available at http://alloy.mit.edu for a variety
of platforms. It can display its results in textual and graphical form, and
includes a visualization facility that lets you customize the graphical
output for the model at hand.

All the examples in the book are available for download at the book’s
website, http://softwareabstractions.org, along with other supplementary
material.

watermarked.indd 4 @ 12/5/05 1:43:40 PM



