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hA.1.8 Defining Acyclicity for an Undirected Graph
An undirected graph can be represented as a binary relation, con-
strained to be symmetric. Write constraints on such a relation that rule 
out cycles. Here is a suitable template:

module exercises/undirected
sig Node {adjs: set Node}
pred acyclic () {
 adjs = ~adjs
 … your constraints here
 }
run acyclic for 4

A.1.9 Axiomatizing Transitive Closure
Transitive closure is not axiomatizable in first-order logic. In short, that 
means that if you want to express it, you need a special operator, be-
cause it can’t be defined in terms of other operators. Here’s a bogus 
attempt to do just that; your challenge is to use the Alloy Analyzer to 
find the flaw.
Recall that the transitive closure of a binary relation r is the smallest 
transitive relation R that includes r. Let’s say R is a transitive cover of r if 
R is transitive and includes r. To ensure that R is the smallest transitive 
cover, we can say that removing any tuple a -> b from R gives a relation 
that is not a transitive cover of r. Formalize this by completing the fol-
lowing template:

module exercises/closure

pred transCover (R, r: univ -> univ) {
 … your constraints here
 }
pred transClosure (R, r: univ -> univ) {
 transCover [R, r]
 … your constraint here
 }

assert Equivalence {
 all R, r: univ -> univ | transClosure[R, r] iff R = ^r
 }
check Equivalence for 3

Now execute the command, examine the counterexample, and explain 
what the bug is.
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(/e official definition of UML 1.0 had this problem incidentally.)
In fact, for finite domains – which is how Alloy is interpreted – closure 
can be axiomatized in first-order logic. Some recent technical reports 
explains how to do this [16, 9]. (/anks to Masahiro Sakai for telling me 
about this work.) Define a ternary relation C such that

x -> y -> z in C

when y is at some non-zero distance on a shortest path in the relation 
r from x to z. /e reflexive transitive closure R of r can be expressed in 
terms of C as

R = {x, y: univ | x -> y -> y in C or x = y}

and—this is the surprising part—C itself can be defined by the following 
axioms:

all x, y, z, u: univ {
 x -> x -> y not in C
 x -> y -> u in C and y -> z -> u in C => x -> z -> u in C
 x -> y -> y in C and y -> z -> z in C and x != z => x -> z -> z in C
 x -> y in r and x != y => x -> y -> y in C
 x -> y -> y in C => some v: univ | x -> v in r and x -> v -> y in C
 x -> y -> z in C and y != z => y -> z -> z in C
 }

To check this axiomatization, just define a predicate like this:
pred transClosure’ (R, r: univ -> univ, C: univ -> Univ -> univ) {
 … axioms here
 }

and edit the assertion to read
assert Equivalence {
 all R, r: univ -> univ, C: univ -> univ -> univ |
  transClosure’ [R, r, C] implies R = *r
 }

Note that the check cannot be bidirectional. Can you see why? Replace 
implies by iff to generate a counterexample, and explain what’s going on.

A.1.10 Address Book Constraints and Expressions
In this exercise, you’ll get some practice writing expressions and con-
straints for a simple multilevel address book. Consider a set Addr of ad-


