
Appendix B:  
Alloy Language Reference

B.1 Lexical Issues

The permitted characters are the printing characters of the ASCII char-
acter set, with the exception of

· backslash \
· backquote `

and, of the ASCII nonprinting characters, only space, horizontal tab, 
carriage return, and linefeed. Since the encoding of linebreaks varies 
across platforms, the Alloy Analyzer accepts any of the standard com-
binations of carriage return and linefeed.

The nonalphanumeric symbols (including hyphen) are used as opera-
tors or for punctuation, with the exception of

· dollar sign $;
· percent sign %;
· question mark ?;
· exclamation point !;
· underscore _;
· single and double quote marks (‘ and “).

Dollar, percent and question mark are reserved for use in future ver-
sions of the language. Underscore and quotes may be used in identifiers. 
Single and double quote marks (numbered 39 and 34 in ASCII) should 
not be confused with typographic quote marks and the prime mark, 
which are not acceptable characters. If text is prepared in a word pro-
cessor, ensure that a ‘smart quotes’ feature is not active, since it might 
replace simple quote marks with typographic ones automatically.

Characters between -- or // and the end of the line, and from /* to */, are 
treated as comments. Comments in the latter form may not be nested.

Noncomment text is broken into tokens by the following separators:

· whitespace (space, tab, linebreak);
· nonalphanumeric characters (except for underscore and quote 

marks).



260 appendix b: alloy language reference

The meaning of the text is independent of its format; in particular, line-
breaks are treated as whitespace just like spaces and tabs.

Keywords and identifiers are case sensitive.

Identifiers may include any of the alphabetic characters, and (except as 
the first character) numbers, underscores, and quote marks. A hyphen 
may not appear in an identifier, since it is treated as an operator.

A numeric constant consists of a sequence of digits between 0 and 9, 
whose first digit is not zero.

The following sequences of characters are recognized as single tokens:

· the implication operator =>
· the integer comparison operators >= and =<
· the product arrow ->
· the restriction operators <: and :>
· the relational override operator ++
· conjunction && and disjunction ||
· the comment markings --, //, /* and */

The negated operators (such as !=) are not treated as single tokens, so 
they may be written with whitespace between the negation and com-
parison operators.

The following are reserved as keywords and may not be used for identi-
fiers:

abstract	 all	 and	 as	 assert	
but	 check	 disj	 else	 exactly	
extends	 fact	 for	 fun	 iden	
iff	 implies	 in	 Int	 let	
lone	 module	 no	 none	 not	
one	 open	 or	 pred	 run	
set	 sig	 some	 sum	 univ																																			

B.2 Namespaces

Each identifier belongs to a single namespace. There are three namespac-
es:

· module names and module aliases;
· signatures, fields, paragraphs (facts, functions, predicates and asser-

tions), and bound variables (arguments to functions and predi-
cates, and variables bound by let and quantifiers);



appendix b: alloy language reference 261

· command names.

Identifiers in different namespaces may share names without risk of 
name conflict. Within a namespace, the same name may not be used for 
different identifiers, with one exception: bound variables may shadow 
each other, and may shadow field names. Conventional lexical scoping 
applies, with the innermost binding taking precedence.

B.3 Grammar

The grammar uses the standard BNF operators:

· x* for zero or more repetitions of x;
· x+ for one or more repetitions of x;
· x | y for a choice of x or y;
· [x] for an optional x.

In addition,

· x,* means zero or more comma-separated occurrences of x;
· x,+ means one or more comma-separated occurrences of x.

To avoid confusion, potentially ambiguous symbols—namely paren-
theses, square brackets, star, plus and the vertical bar—are set in bold 
type when they are to be interpreted as terminals rather than as meta 
symbols. The string name represents an identifier and number represents 
a numeric constant, according to the lexical rules above (section B.1).

alloyModule	::=	[moduleDecl]	import*	paragraph*

moduleDecl	::=	module	qualName	[[name,+]]

import	::=	open	qualName	[[qualName,+]]	[as	name]

paragraph	::=	sigDecl	|	factDecl	|	predDecl	|	funDecl
	 |	assertDecl	|	cmdDecl

sigDecl	::=	[abstract]	[mult]	sig	name,+	[sigExt]	{	decl,*	}	[block]

sigExt	::=	extends	qualName	|	in	qualName	[+	qualName]*

mult	::=	lone	|	some	|	one

decl	::=	[disj]	name,+	:	[disj]	expr

factDecl	::=	fact	[name]	block

predDecl	::=	pred	[qualName	.]	name	[paraDecls]	block



262 appendix b: alloy language reference

funDecl	::=	fun	[qualName	.]	name	[paraDecls]	:	expr	{	expr	}

paraDecls	::=	(	decl,*	)	|	[	decl,*	]

assertDecl	::=	assert	[name]	block

cmdDecl	::=	[name	:]	[run | check]	[qualName | block]	[scope]

scope	::=	for	number	[but	typescope,+]	|	for	typescope,+

typescope	::=	[exactly]	number	qualName

expr	::=	const	|	qualName	|	@name	|	this
	 |	unOp	expr	|	expr	binOp	expr	|	expr	arrowOp	expr
	 |	expr	[	expr,*	]
	 |	expr	[! | not]	compareOp	expr
	 |	expr	(=> | implies)	expr	else	expr
	 |	let	letDecl,+	blockOrBar
	 |	quant	decl,+	blockOrBar
	 |	{	decl,+	blockOrBar	}
	 |	(	expr	)	|	block

const	::=	[-]	number	|	none	|	univ	|	iden

unOp	::=	!	|	not	|	no	|	mult	|	set	|	#	|	~	|	*	|	^

binOp	::=	||	|	or	|	&&	|	and	|	<=>	|	iff	|	=>	|	implies	|
	 &	|	+	|	-	|	++	|	<:	|	:>	|	.

arrowOp	::=	[mult | set]	->	[mult | set]

compareOp	::=	in	|	=	|	<	|	>	|	=<	|	>=

letDecl	::=	name	=	expr

block	::=	{	expr*	}

blockOrBar	::=	block	|	bar	expr
bar	::=	|

quant	::=	all	|	no	|	sum	|	mult

qualName	::=	[this/]	(name	/)*	name

The grammar does not distinguish relation-valued expressions from 
boolean-valued expressions (that is, ‘constraints’ or ‘formulas’). Never-
theless, the two categories are in fact disjoint. Only the boolean opera-
tors (such as &&, denoting conjunction), and not the relational operators 
(such as &, denoting intersection) can be applied to boolean expressions.



appendix b: alloy language reference 263

B.4 Precedence and Associativity

Expression operators bind most tightly, in the following precedence or-
der, tightest first:

· unary operators: ~, ^ and *;
· dot join: . ;
· box join: [];
· restriction operators: <: and :>;
· arrow product: ->;
· intersection: &;
· override: ++;
· cardinality: #;
· union and difference: + and -;
· expression quantifiers and multiplicities: no, some, lone, one, set;
· comparison negation operators: ! and not;
· comparison operators: in, =, <, >, =, =<, =>.

Note, in particular, that dot join binds more tightly than box join, so 
a.b[c] is parsed as (a.b)[c].

Logical operators are bound at lower precedence, as follows:

· negation operators: ! and not;
· conjunction: && and and;
· implication: =>, implies, and else;
· bi-implication: <=>, iff;
· disjunction: || and or;
· let and quantification operators: let, no, some, lone, one and sum.

All binary operators associate to the left, with the exception of implica-
tion, which associates to the right. So, for example, p => q => r is parsed 
as p => (q => r), and a.b.c is parsed as (a.b).c.

In an implication, an else-clause is associated with its closest then-
clause. So the constraint

p	=>	q	=>	r	else	s

for example, is parsed as

p	=>	(q	=>	r	else	s)



264 appendix b: alloy language reference

B.5 Semantic Basis

B.5.1 Instances and Meaning
A model’s meaning is several collections of instances. An instance is a 
binding of values to variables. Typically, a single instance represents a 
state, or a pair of states (corresponding to execution of an operation), 
or an execution trace. The language has no built-in notion of state ma-
chines, however, so an instance need not represent any of these things.

The collections of instances assigned to a model are:

· A set of core instances associated with the facts of the model, and 
the constraints implicit in the signature declarations. These in-
stances have as their variables the signatures and their fields, and 
they bind values to them that make the facts and declaration con-
straints true.

· For each function or predicate, a set of those instances for which the 
facts and declaration constraints of the model as a whole are true, 
and additionally the constraint of the function or predicate is true. 
The variables of these instances are those of the core instances, ex-
tended with the arguments of the function or predicate.

· For each assertion, a set of those instances for which the facts and 
declaration constraints of the model as a whole are true, but for 
which the constraint of the assertion is false.

A model without any core instances is inconsistent, and almost certainly 
erroneous. A function or predicate without instances is likewise incon-
sistent, and is unlikely to be useful. An assertion is expected not to have 
any instances: the instances are counterexamples, which indicate that 
the assertion does not follow from the facts.

The Alloy Analyzer finds instances of a model automatically by search 
within finite bounds (specified by the user as a scope; see subsection 
B.7.6 below). Because the search is bounded, failure to find an instance 
does not necessarily mean that one does not exist. But instances that 
are found are guaranteed to be valid.

B.5.2 Relational Logic
Alloy is a first-order relational logic. The values assigned to variables, 
and the values of expressions evaluated in the context of a given in-
stance, are relations. These relations are first order: that is, they consist 
of tuples whose elements are atoms (and not themselves relations).



appendix b: alloy language reference 265

Alloy has no explicit notion of sets, tuples or scalars. A set is simply a 
unary relation; a tuple is a singleton relation; and a scalar is a single-
ton, unary relation. The type system distinguishes sets from relations 
because they have different arity, but does not distinguish tuples and 
scalars from non-singleton relations.

There is no function application operator; relational join is used in its 
place. For example, given a relation f that is functional, and x and y con-
strained to be scalars, the constraint

x.f	=	y

constrains the image of x under the relation f to be the set y. So long as 
x is in the domain of f, this constraint will have the same meaning as it 
would if the dot were interpreted as function application, f as a func-
tion, and x and y as scalar-typed variables. But if x is outside the domain 
of f, the expression x.f will evaluate to the empty set, and since y is a 
scalar (that is, a singleton set), the constraint as a whole will be false. 
In a language with function application, various meanings are possible, 
depending on how partial functions are handled. An advantage of the 
Alloy approach is that it sidesteps this issue.

The declaration syntax of Alloy has been designed so that familiar forms 
have their expected meaning. Thus, when X is a set, the quantified con-
straint

all	x:	X	|	F

has x range over scalar values: that is, the constraint F is evaluated for 
bindings of x to singleton subsets of X.

The syntax of Alloy does in fact admit higher-order quantifications. For 
example, the assertion that join is associative over binary relations may 
be written

assert	{all	p,	q,	r:	univ -> univ	|	(p.q).r	=	p.(q.r)}

Many such constraints become first order when presented for analysis, 
since (as here) the quantified variables can be Skolemized away. If a 
constraint remains truly higher order, the Alloy Analyzer will warn the 
user that analysis is likely to be infeasible.



266 appendix b: alloy language reference

B.6 Types and Overloading

Alloy’s type system was designed with a different aim from that of a 
programming language. There is no notion in a modeling language of a 

“runtime error,” so type soundness is not an issue. Instead, the type sys-
tem is designed to allow as many reasonable models as possible, with-
out generating false alarms, while still catching prior to analysis those 
errors that can be explained in terms of the types of declared fields and 
variables alone.

We expect most users to be able to ignore the subtleties of the type sys-
tem. Error messages reporting that an expression is ill-typed are never 
spurious, and always correspond to a real error. Messages reporting a 
failure to resolve an overloaded field reference can always be handled by 
a small and systematic modification, explained below.

B.6.1 Type Errors
Three kinds of type error are reported:

· An arity error indicates an attempt to apply an operator to an expres-
sion of the wrong arity, or to combine expressions of incompatible 
arity. Examples include taking the closure of a nonbinary relation; 
restricting a relation to a non-set (that is, a relation that does not 
have an arity of one); taking the union, intersection, or difference, or 
comparing with equality or subset, two relations of unequal arity.

· A disjointness error indicates an expression in which two relations 
are combined in such a way that the result will always be the empty 
relation, irrespective of their value. Examples include taking the in-
tersection of two relations that do not intersect; joining two relations 
that have no matching elements; and restricting a relation with a set 
disjoint from its domain or range. Applying the overriding operator 
to disjoint relations also generates a disjointess error, even though 
the result may not be the empty relation, since the relations are ex-
pected to overlap (a union sufficing otherwise).

· A redundancy error indicates that an expression (usually appearing 
in a union expression) is redundant, and could be dropped without 
affecting the value of the enclosing constraint. Examples include ex-
pressions such as (a + b) & c and constraints such as c in a + b, where 
one of a or b is disjoint from c.

Note that unions of disjoint types are permitted, because they might 
not be erroneous. Thus the expression (a + b).c, for example, will be type 
correct even if a and b have disjoint types, so long as the type of the 



appendix b: alloy language reference 267

leftmost column of c overlaps with the types of the rightmost columns 
of both a and b.

B.6.2 Field Overloading
Fields of signatures may be overloaded. That is, two distinct signatures 
may have fields of the same name, so long as the signatures do not rep-
resent sets that overlap. Field references are resolved automatically.

Resolution of overloading exploits the full context of an expression, and 
uses the same information used by the type checker. Each possible re-
solving of an overloaded reference is considered. If there is exactly one 
that would not generate a type error, it is chosen. If there is more than 
one, an error message is generated reporting an ambiguous reference.

Resolution takes advantage of all that is known about the types of the 
possible resolvents, including arity, and the types of all columns (not 
only the first). Thus, in contrast to the kind of resolution used for field 
dereferencing in object-oriented languages (such as Java), the reference 
to f in an expression such as x.f can be resolved not only by using the 
type of x but by using in addition the context in which the entire expres-
sion appears. For example, if the enclosing expression were a + x.f, the 
reference f could be resolved by the arity of a.

If a field reference cannot be resolved, it is easy to modify the expres-
sion so that it can be. If a field reference f is intended to refer to the field 
f declared in signature S, one can replace a reference to f by the expres-
sion S <: f. This new expression has the same meaning, but is guaranteed 
to resolve the reference, since only the f declared in S will produce a 
nonempty result. Note that this is not a special casting syntax. It relies 
only on the standard semantics of the domain restriction operator.

B.6.3 Subtypes
The type system includes a notion of subtypes. This allows more errors 
to be caught, and permits a finer-grained namespace for fields.

The type of any expression is a union type consisting of the union of 
some relation types. A relation type is a product of basic types. A basic 
type is either a signature type, the predefined universal type univ, or the 
predefined empty type none. The basic types form a lattice, with univ as 
its maximal, and none as its minimal, element. The lattice is obtained 
from the forest of trees of declared signature types, augmented with 
the subtype relationship between top-level types and univ, and between 
none and all signature types.



268 appendix b: alloy language reference

The empty union (that is, consisting of no relation types) is used in type 
checking to represent ill-typed expressions, and is distinct from the 
union consisting of a relation type that is a product of none’s (which is 
used for expressions constructed with the constant none, representing 
an intentionally empty relation).

The semantics of subtyping is very simple. If one signature is a subtype 
of another, it represents a subset. The immediate subtypes of a signa-
ture are disjoint. Two subtypes therefore overlap only if one is, directly 
or indirectly, a subtype of the other.

The type system computes for each expression a type that approximates 
its value. Consider, for example, the join

e1	.	e2

where the subexpressions have types

e1	:	A -> B
e2	:	C -> D

If the basic types B and C do not overlap, the join gives rise to a disjoint-
ness error. Otherwise, one of B or C must be a subtype of the other. The 
type of the expression as a whole will be A -> D.

No casts are needed, either upward or downward. If a field f is declared 
in a signature S, and sup and sub are respectively variables whose types 
are a supertype and subtype of S, both sup.f and sub.f will be well-typed. 
In neither case is the expression necessarily empty. In both cases it may 
be empty: in the former case if sup is not in S, and in the latter if f is de-
clared to be partial and sub is outside its domain. On the other hand, if 
d is a variable whose type D is disjoint from the type of S—for example, 
because both S and D are immediate subtypes of some other signature—
the expression d.f will be ill-typed, since it must always evaluate to the 
empty relation.

B.6.4 Functions and Predicates
Invocations of functions and predicates are type-checked by ensuring 
that the actual argument expressions are not disjoint from the formal 
arguments. Functions and predicates, like fields, may be overloaded, so 
long as all usages can be unambiguously resolved by the type checker.

The constraints implicit in the declarations of arguments of functions 
and predicates are conjoined to the body constraint when a function 
or predicate is run. When a function or predicate is invoked (that is, 



appendix b: alloy language reference 269

used within another function or predicate but not run directly), how-
ever, these implicit constraints are ignored. You should therefore not 
rely on such declaration constraints to have a semantic effect; they are 
intended as redundant documentation. A future version of Alloy may 
include a checking scheme that determines whether actual expressions 
have values compatible with the declaration constraints of formals.

B.6.5 Multiplicity Keywords
Alloy uses the following multiplicity keywords shown with their inter-
pretations:

· lone: zero or one;
· one: exactly one;
· some: one or more.

To remember that lone means zero or one, it may help to think of the 
word as short for “less than or equal to one.”

These keywords are used in several contexts:

· as quantifiers in quantified constraints: the constraint one x: S | F, for 
example, says that there is exactly one x that satisfies the constraint F;

· as quantifiers in quantified expressions: the constraint lone e, for 
example, says that the expression e denotes a relation containing at 
most one tuple;

· in set declarations: the declaration x: some S, for example, where S has 
unary type, declares x to be a non-empty set of elements drawn from 
S;

· in relation declarations: the declaration r: A one -> one B, for example, 
declares r to be a one-to-one relation from A to B.

· in signature declarations: the declaration one sig S {…}, for example, 
declares S to be a signature whose set contains exactly one element.

When declaring a set variable, the default is one, so in a declaration

x:	X

in which X has unary type, x will be constrained to be a scalar. In this 
case, the set keyword overrides the default, so

x:	set	X

would allow x to contain any number of elements.



270 appendix b: alloy language reference

B.7 Language Features

B.7.1 Module Structure
An Alloy model consists of one or more files, each containing a single 
module. One “main” module is presented for analysis; it imports other 
modules directly (through its own imports) or indirectly (through im-
ports of imported modules).

A module consists of an optional header identifying the module, some 
imports, and some paragraphs:

alloyModule	::=	[moduleDecl]	import*	paragraph*

A model can be contained entirely within one module, in which case 
no imports are necessary. A module without paragraphs is syntactically 
valid but useless.

A module is named by a path ending in a module identifier, and may be 
parameterized by one or more signature parameters:

moduleDecl	::=	module	qualName	[[name,+]]
qualName	::=	[this/]	(name	/)*	name

The path must correspond to the directory location of the module’s file 
with respect to the default root directory, which is the directory of the 
main file being analyzed. There is a separate default root directory for 
library models. A module with the module identifier m must be stored 
in the file named m.als.

Other modules whose components (signatures, paragraphs or com-
mands) are referred to in this module must be imported explicitly with 
an import statement:

import	::=	open	qualName	[[qualName,+]]	[as	name]

A module may not contain references to components of another mod-
ule that it does not import, even if that module is imported along with 
it in another module. A separate import is needed for each imported 
module. An import statement gives the path and name of the imported 
module, instantiations of its parameters (if any), and optionally an alias.

Each imported module is referred to within the importing module ei-
ther by its alias, if given, or if not, by its module identifier. The purpose 
of aliases is to allow distinct names to be given to modules that hap-
pen to share the same module identifier. This arises most commonly 
when there are multiple imports for the same module with different 



appendix b: alloy language reference 271

parameter instantiations. Since the instantiating types are not part of 
the module identifier, aliases are used to distinguish the instantiations.

There must be an instantiating signature parameter for each parameter 
of the imported module. An instantiating signature may be a type, sub-
type, or subset, or one of the predefined types Int and univ. If the im-
ported module declares a signature that is an extension of a signature 
parameter, instantiating that parameter with a subset signature or with 
Int is an error.

A single module may be imported more than once with the same pa-
rameters. The result is not to create multiple copies of the same module, 
but rather to make a single module available under different names. The 
order of import statements is also immaterial, even if one provides in-
stantiating parameters to another.

If the name of a component of an imported module is unambiguous, it 
may be referred to without qualification. Otherwise, a qualified name 
must be used, consisting of the module identifier or alias, a slash mark, 
and then the component name. If an alias is declared, the regular mod-
ule name may not be used. Note also that qualified names may not in-
clude instantiated parameters, so that, as mentioned above, if a single 
module is imported multiple times (with different instantiating param-
eters), aliases should be declared and components of the instantiated 
modules referred to with qualified names that use the aliases as prefixes.

The paragraphs of a module are signatures, facts, predicate and function 
declarations, assertions, and commands:

paragraph	::=	sigDecl	|	factDecl	|	predDecl	|	funDecl
	 |	assertDecl	|	cmdDecl

Paragraphs may appear in a module in any order. There is no require-
ment of definition before use.

Signatures represent sets and are assigned values in analysis; they 
therefore play a role similar to static variables in a programming lan-
guage. Facts, functions, and predicates are packagings of constraints. 
Assertions are redundant constraints that are intended to hold, and are 
checked to ensure consistency. Commands are used to instruct the ana-
lyzer to perform model-finding analyses. A module exports as compo-
nents all paragraphs except for commands.

The signature Int is a special predefined signature representing integers, 
and can be used without an explicit import.



272 appendix b: alloy language reference

Module names occupy their own namespace, and may thus coincide 
with the names of signatures, paragraphs, arguments, or variables with-
out conflict.

B.7.2 Signature Declarations
A signature represents a set of atoms. There are two kinds of signature. 
A signature declared using the in keyword is a subset signature:

sigDecl	::=	[abstract]	[mult]	sig	name,+	[sigExt]	sigBody
mult	::=	lone	|	some	|	one
sigExt	::=	in	qualName	[+	qualName]*

A signature declared with the extends keyword is a type signature:

sigExt	::=	extends	qualName

A type signature introduces a type or subtype. A type signature that 
does not extend another signature is a top-level signature, and its type 
is a top-level type. A signature that extends another signature is said to 
be a subsignature of the signature it extends, and its type is taken to be 
a subtype of the type of the signature extended. A signature may not 
extend itself, directly or indirectly. The type signatures therefore form 
a type hierarchy whose structure is a forest: a collection of trees rooted 
in the top-level types.

Top-level signatures represent mutually disjoint sets, and subsignatures 
of a signature are mutually disjoint. Any two distinct type signatures 
are thus disjoint unless one extends the other, directly or indirectly, in 
which case they overlap.

A subset or subtype signature represents a set of elements that is a sub-
set of the union of its parents: the signatures listed in its declaration. A 
subset signature may not be extended, and subset signatures are not 
necessarily mutually disjoint. A subset signature may not be its own 
parent, directly or indirectly. The subset signatures and their parents 
therefore form a directed acyclic graph, rooted in type signatures. The 
type of a subset signature is a union of top-level types or subtypes, con-
sisting of the parents of the subset that are types, and the types of the 
parents that are subsets.

An abstract signature, marked abstract, is constrained to hold only those 
elements that belong to the signatures that extend it. If there are no 
extensions, the marking has no effect. The intent is that an abstract sig-
nature represents a classification of elements that is refined further by 



appendix b: alloy language reference 273

more ‘concrete’ signatures. If it has no extensions, the abstract keyword 
is likely an indication that the model is incomplete.

Any multiplicity keyword (with the exception of the default overriding 
keyword set) may be associated with a signature, and constrains the sig-
nature’s set to have the number of elements specified by the multiplicity.

The body of a signature declaration consists of declarations of fields and 
an optional block containing a signature fact constraining the elements 
of the signature:

sigBody	::=	{	decl,*	}	[block]

A subtype signature inherits the fields of the signature it extends, along 
with any fields that signature inherits. A subset signature inherits the 
fields of its parent signatures, along with their inherited fields.

A signature may not declare a field whose name conflicts with the name 
of an inherited field. Moreover, two subset signatures may not declare 
a field of the same name if their types overlap. This ensures that two 
fields of the same name can only be declared in disjoint signatures, and 
there is always a context in which two fields of the same name can be 
distinguished. If this were not the case, some field overloadings would 
never be resolvable.

Like any other fact, the signature fact is a constraint that always holds. 
Unlike other facts, however, a signature fact is implicitly quantified over 
the signature set. Given the signature declaration

sig	S	{…}	{	F	}

the signature fact F is interpreted as if one had written an explicit fact

fact	{	all	this:	S	|	F’	}

where F’ is like F, but has each reference to a field f of S (whether de-
clared or inherited) replaced by this.f. Prefixing a field name with the 
special symbol @ suppresses this implicit expansion.

Declaring multiple signatures at once in a single signature declaration is 
equivalent to declaring each individually. Thus the declaration

sig	A,	B	extends	C	{f:	D}

for example, introduces two subsignatures of C called A and B, each with 
a field f.



274 appendix b: alloy language reference

B.7.3 Declarations
The same declaration syntax is used for fields of signatures, arguments 
to functions and predicates, comprehension variables, and quantified 
variables, all of which we shall here refer to generically as variables. The 
interpretation for fields, which is slightly different, is explained second.

A declaration introduces one or more variables, and constrains their 
values and type:

decl	::=	[disj]	name,+	:	[disj]	expr

A declaration has two effects:

· Semantically, it constrains the value a variable can take. The relation 
denoted by each variable (on the left) is constrained to be a subset of 
the relation denoted by the bounding expression (on the right).

· For the purpose of type checking, a declaration gives the variable a 
type. A type is determined for the bounding expression, and that type 
is assigned to the variable.

When more than one variable is declared at once, the keyword disj ap-
pearing on the left indicates that the declared variables are mutually 
disjoint (that is, the relations they denote have empty intersections). In 
the declarations of fields (within signatures), the disj keyword may ap-
pear also on the right, for example:

sig	S	{f:	disj	e}

This constrains the field values of distinct members of the signature to 
be disjoint. In this case, it is equivalent to the constraint

all	a,	b:	S	|	a	!=	b	implies	no	a.f	&	b.f

which can be written more succinctly (using the disj keyword in a dif-
ferent role) as

all	disj	a,	b:	S	|	disj	[a.f,	b.f]

Any variable that appears in a bounding expression must have been de-
clared already, either earlier in the sequence of declarations in which 
this declaration appears, or earlier elsewhere. For a quantified variable, 
this means within an enclosing quantifier; for a field of a signature, this 
means that the field is inherited; for a function or predicate argument, 
this means earlier in the argument declarations. This ordering applies 
only to variables and not to a signature name, which can appear in a 



appendix b: alloy language reference 275

bounding expression irrespective of where the signature itself is de-
clared.

Declarations within a signature have essentially the same interpretation. 
But for a field f, the declaration constraints apply not to f itself but to 
this.f : that is, to the value obtained by dereferencing an element of the 
signature with f. Thus, for example, the declaration

sig	S	{f:	e}

does not constrain f to be a subset of e (as it would if f were a regular 
variable), but rather implies

all	this:	S	|	this.f	in	e

Moreover, any field appearing in e is expanded according to the rules of 
signature facts (see section B.7.2). A similar treatment applies to mul-
tiplicity constraints (see sections B.6.5 and B.7.4) and disj. In this case, 
for example, if e denotes a unary relation, the implicit multiplicity con-
straint will make this.f a scalar, so that f itself will denote a total function 
on S.

Type checking of fields has the same flavor. The field f is not assigned the 
type e, but rather the type of the expression S -> e. That is, the domain of 
the relation f has the type S, and this.f has the same type as e.

B.7.4 Multiplicities
In either a declaration

decl	::=	[disj]	name,+	:	[disj]	expr

or a subset constraint

expr	::=	expr	in	expr

the right-hand side expression may include multiplicities, and the key-
word set that represents the omission of a multiplicity constraint.

There are two cases to consider, according to whether the right-hand ex-
pression denotes a unary relation (ie, a set), or a relation of higher arity.

If the right-hand expression denotes a unary relation, a multiplicity key-
word may appear as a unary operator on the expression:

expr	::=	unOp	expr
unOp	::=	mult	|	set
mult	::=	lone	|	some	|	one



276 appendix b: alloy language reference

as in, for example:

x:	lone	S

which would constrain x to be an option—either empty or a scalar in 
the set S.

The multiplicity keywords apply cardinality constraints to the left-hand 
variable or expression: lone says the set contains at most one element; 
some says the set contains at least one element; and one says the set 
contains exactly one element. In a declaration (formed with the colon 
rather than the in keyword), the default multiplicity is one, so that the 
declared variable or expression is constrained to be a singleton as if it 
were marked with the keyword one.

Thus

x:	S

makes x a scalar when S is a set. The set keyword retracts this implicit 
constraint and allows any number of elements.

If the right-hand expression denotes a binary or higher-arity relation, 
multiplicity keywords may appear on either side of an arrow operator:

expr	::=	expr	arrowOp	expr
arrowOp	::=	[mult | set]	->	[mult | set]

If the right-hand expression has the form e1 m->n e2, where m and n are 
multiplicity keywords, the declaration or formula imposes a multiplic-
ity constraint on the left-hand variable or expression. An arrow expres-
sion of this form denotes the relation whose tuples are concatenations 
of the tuples in e1 and the tuples in e2. If the marking n is present, the re-
lation denoted by the declared variable is required to contain, for each 
tuple t1 in e1, n tuples that begin with t1. If the marking m is present, 
the relation denoted by the declared variable is required to contain, for 
each tuple t2 in e2, m tuples that end with t2.

When the expressions e1 and e2 are unary, these reduce to familiar no-
tions. For example, the declaration

r:	X	->	one	Y

makes r a total function from X to Y;

r:	X	->	lone	Y

makes it a partial function; and



appendix b: alloy language reference 277

r:	X	one	->	one	Y

makes it a bijection.

Multiplicity markings can be used in nested arrow expressions. For ex-
ample, a declaration of the form

r:	e1	m	->	n	(e2	m’	->	n’	e3)

produces the constraints described above (due to the multiplicity key-
words m and n), but it produces additional constraints (due to m’ and n’). 
The constraints for the nested expression are the same multiplicity con-
straints as for a top-level arrow expression, but applied to each image of 
a tuple under the declared relation that produces a value for the nested 
expression. For example, if e1 denotes a set, the multiplicity markings m’ 
and n’ are equivalent to the constraint

all	x:	e1	|	x.r	in	e2	m’	->	n’	e3

If e1 is not a set, the quantification must range over the appropriate 
tuples. For example, if e1 is binary, the multiplicities are short for

all	x,	y:	univ	|	x->y	in	e1	implies	y.(x.r)	in	e2	m’	->	n’	e3

A subset constraint that includes multiplicities is sometimes called a 
declaration formula (to distinguish it from a declaration constraint im-
plicit in a declaration). Declaration formula are useful for two reasons. 
First, they allow multiplicity constraints to be placed on arbitrary ex-
pressions. Thus,

p.q	in	t	one -> one	t

says that the join of p and q is a bijection. Second, they allow additional 
multiplicity constraints to be expressed for fields that cannot be ex-
pressed in their declarations. For example, the relation r of type A -> B 
can be declared as a field of A:

sig	A	{r:	set	B}

Since the declaration’s multiplicity applies to the relation this.r, it cannot 
constrain the left-hand multiplicity of the relation. To say that r maps 
at most one A to each B, one could add as a fact the declaration formula

r	in	A	lone -> B



278 appendix b: alloy language reference

B.7.5 Expression Paragraphs
A fact is a constraint that always holds; from a modeling perspective, 
it can be regarded as an assumption. A predicate is a template for a 
constraint that can be instantiated in different contexts; one would use 
predicates, for example, to check that one constraint implies another. A 
function is a template for an expression. An assertion is a constraint that 
is intended to follow from the facts of a model; it is thus an intentional 
redundancy. Assertions can be checked by the Alloy Analyzer; func-
tions and predicates can be simulated. (Recall that the grammar uni-
fies constraints and expressions into a single expression class; the terms 
‘constraint’ and ‘expression’ are used to refer to boolean- and relation-
valued expressions respectively.)

A fact can be named for documentation purposes. An assertion can be 
named or anonymous, but since a command to check an assertion must 
name it, an anonymous assertion cannot be checked. Functions and 
predicates must always be named.

A fact consists of an optional name and a constraint, given as a block 
(which is a sequence of constraints, implicitly conjoined):

factDecl	::=	fact	[name]	block

A predicate declaration consists of the name of the predicate, some ar-
gument declarations, and a block of constraints:

predDecl	::=	pred	[qualName	.]	name	[paraDecls]	block

paraDecls	::=	(	decl,*	)	|	[	decl,*	]

(In functions and predicates, either round or square parentheses may 
be used to delineate the argument list.)

The argument declarations may include an anonymous first argument. 
When a predicate is declared in the form

pred	S.f	(…)	{…}

the first argument is taken to be a scalar drawn from the signature S, 
which is referred to within the body of the predicate using the keyword 
this, as if the declaration had been written

pred	f	(this:	S,	…)	{…}

A function declaration consists of the name of the function, some argu-
ment declarations, and an expression:

funDecl	::=	fun	[qualName	.]	name	[paraDecls]	:	expr	{	expr	}



appendix b: alloy language reference 279

paraDecls	::=	(	decl,*	)	|	[	decl,*	]

The argument declarations include a bounding expression for the result 
of the function, corresponding to the value of the expression. The first 
argument may be declared anonymously, exactly as for predicates.

Predicates and functions are invoked by providing an expression for 
each argument; the resulting expression is a boolean expression for a 
predicate and an expression of the function’s return type for a function:

expr	::=	expr	[	expr,*	]

In contrast to the declaration syntax, invocations may use only square 
and not round parentheses; this is a change from a previous version of 
Alloy. A function instantiation of the form f[x] looks just like a primi-
tive function application, where f is a relation that is functional and x 
is a set or scalar. Note, however, that this syntactic similarity is only 
a pun semantically, since instantiation of a declared function is not a 
relational join: it may be higher order (in the relational sense, mapping 
relations to relations), and does not have the lifting semantics of a join 
(namely that application to a set results in the union of application to 
the set’s elements). A predicate application is treated in the same way 
as a function application, but yields an expression of boolean type: that 
is, a constraint.

The syntactic similarity is systematic however. An argument list inside 
the box can be traded for individual boxes, so that f[a,b], for example, 
can be written equivalently as f[a][b]. Likewise, the dot operator can be 
used in place of the box operator:

expr	::=	expr	binOp	expr
binOp	::=	.

so f[a] can be written a.f, and any combination of dot and box is permit-
ted, following the rule that the order of arguments declared in the func-
tion corresponds to the order of columns in the ‘relation’ being joined. 
Finally, the same resolving that allows field names to be overloaded ap-
plies to function and predicate names.

There are two predefined functions and predicates: sum and disj. The 
sum function is discussed below in section B.9. The disj predicate re-
turns true or false depending on whether its arguments represent mu-
tually disjoint relations. Unlike a user-defined predicate or function, disj 
accepts any number of arguments (greater than zero). For example, the 
expression



280 appendix b: alloy language reference

disj	[A,	B,	C]

evaluates to true when the sets A, B and C are all mutually disjoint.

Invocation can be viewed as textual inlining. An invocation of a pred-
icate gives a constraint which is obtained by taking the constraint of 
the predicate’s body, and replacing the formal arguments by the corre-
sponding expressions of the invocation. Likewise, invocation of a func-
tion gives an expression obtained by taking the expression of the func-
tion’s body, and replacing the formal arguments of the function by the 
corresponding expressions of the invocation. Recursive invocations are 
not currently supported.

A function or predicate invocation may present its first argument in 
receiver position. So instead of writing

p	[a,	b,	c]

for example, one can write

a.p	[b,	c]

The form of invocation is not constrained by the form of declaration. 
Although often a function or predicate will be both declared with an 
anonymous receiver argument and used with receiver syntax, this is not 
necessary. The first argument may be presented as a receiver irrespec-
tive of the format of declaration, and the first argument may be declared 
anonymously irrespective of the format of use. In particular, it can be 
convenient to invoke a function or predicate in receiver form when the 
first argument is not a scalar, even though it cannot be declared with 
receiver syntax in that case. Note that these rules just represent a spe-
cial case of the equivalence of the dot and box operators; all one must 
remember is that an argument declared in receiver style is treated as the 
first argument in the list.

B.7.6 Commands
A command is an instruction to the Alloy Analyzer to perform an analy-
sis. Analysis involves constraint solving: finding an instance that satis-
fies a constraint. A run command causes the analyzer to search for an 
example that witnesses the consistency of a function or a predicate. A 
check command causes it to search for a counterexample showing that 
an assertion does not hold.



appendix b: alloy language reference 281

A run command consists of an optional command name, the keyword 
run, the name of a function or predicate (or just a constraint given as a 
block), and, optionally, a scope specification:

cmdDecl	::=	[name	:]	run	[qualName | block]	[scope]
scope	::=	for	number	[but	typescope,+]	|	for	typescope,+

typescope	::=	[exactly]	number	qualName

A command to check an assertion has the same structure, but uses the 
keyword check in place of run, and either the name of an assertion, or a 
constraint to be treated as an anonymous assertion:

cmdDecl	::=	[name	:]	check	[qualName | block]	[scope]

The command name is used in the user interface of the Alloy Analyzer 
to make it easier to select the command to be executed: when the com-
mand name is present, it is displayed instead of the command string 
itself.

As explained in section B.5, analysis always involves solving a constraint. 
For a predicate with body constraint P, the constraint solved is

P	and	F	and	D

where F is the conjunction of all facts, and D is the conjunction of all 
declaration constraints, including the declarations of the predicate’s ar-
guments. Note that when the predicate’s body is empty, the constraint 
is simply the facts and declaration constraints of the model. Running 
an empty predicate is often a useful starting point in analysis to deter-
mine whether the model is consistent, and, if so, to examine some of its 
instances.

For a function named f whose body expression is E, the constraint solved 
is

f	=	E	and	F	and	D

where F is the conjunction of all facts, and D is the conjunction of all 
declaration constraints, including the declarations of the function argu-
ments. The variable f stands for the value of the expression.

Note that the declaration constraints of a predicate or function are used 
only when that predicate or function is run directly, but are ignored 
when the predicate or function is invoked in another predicate or func-
tion.

For an assertion whose body constraint is A, the constraint solved is



282 appendix b: alloy language reference

F	and	D	and	not	A

namely the negation of

F	and	D	implies	A

where F is the conjunction of all facts, and D is the conjunction of all 
declaration constraints. That is, checking an assertion yields counter-
examples that represent cases in which the facts and declarations hold, 
but the assertion does not.

An instance found by the analyzer will assign values to the following 
variables:

· the signatures and fields of the model;
· for an instance of a predicate or function, the arguments of the func-

tion or predicate, the first of which will be named this if declared 
in receiver position without an argument name;

· for an instance of a function, a variable denoting the value of the 
expression, with the same name as the function itself.

The analyzer may also give values to Skolem constants as witnesses for 
existential quantifications. Whether it does so, and whether existentials 
inside universals are Skolemized, depends on preferences set by the user.

The search for an instance is conducted within a scope, which is speci-
fied as follows:

scope	::=	for	number	[but	typescope,+]	|	for	typescope,+

typescope	::=	[exactly]	number	qualName

The scope specification places bounds on the sizes of the sets assigned to 
type signatures, thus making the search finite. Only type signatures are 
involved; subset signatures may not be given bounds in a scope specifi-
cation (although of course any set can be bounded with an explicit con-
straint on its cardinality). For the rest of this section, “signature” should 
be read as synonymous with “type signature.”

For the built-in signature Int, the scope specification does not give the 
number of elements in the signature. Instead, it gives the bitwidth of 
integers, including the sign bit; all integers expressible in this bitwidth 
are included implicitly in the type Int. For example, if the scope specifi-
cation assigns 4 to Int, there are four bits for every integer and integer-
valued expression, and the set Int may contain values ranging from −8 
to +7, including zero. All integer computations are performed within 
the given bitwidth, and if, for a given instance, an expression’s evalua-
tion would require a larger bitwidth to succeed without overflow, the 
instance will not be considered by the analysis.



appendix b: alloy language reference 283

The bounds are determined as follows:

· If no scope specification is given, a default scope of 3 elements is 
used: each top-level signature is constrained to represent a set of 
at most 3 elements.

· If the scope specification takes the form for N, a default of N is used 
instead.

· If the scope specification takes the form for N but …, every signature 
listed following but is constrained by its given bound, and any top-
level signature whose bound is not given implicitly is bounded by 
the default N.

· Otherwise, for an explicit list without a default, each signature listed 
is constrained by the given bound.

Implicit bounds are determined as follows:

· If an abstract signature has no explicit bound, but its subsignatures 
have bounds, implicit or explicit, its bound is the sum of those of 
its subsignatures.

· If an abstract signature has a bound, explicit or by default, and all 
but one of its subsignatures have bounds, implicit or explicit, the 
bound of the remaining subsignature is the difference between the 
abstract signature’s bound and the sum of the bounds of the other 
subsignatures.

· A signature declared with the multiplicity keyword one has a bound 
of 1.

· If an implicit bound cannot be determined for a signature by these 
rules, the signature has no implicit bound.

If a scope specification uses the keyword exactly, the bound is taken to 
be both an upper and lower bound on the cardinality of the signature. 
The rules for implicit bounds are adjusted accordingly. For example, an 
abstract signature whose subsignatures are constrained exactly will 
likewise be constrained exactly.

The scope specification must be

· consistent: at most one bound may be associated with any signature, 
implicitly, explicitly, or by default; and

· complete: every top-level signature must have a bound, implicitly or 
explicitly.

· uniform: if a subsignature is explicitly bounded, its ancestor top-
level signature must be also.



284 appendix b: alloy language reference

B.7.7 Expressions
Expressions in Alloy fall into three categories, which are determined 
not by the grammar but by type checking: relational expressions, bool-
ean expressions, and integer expressions. The term ‘expression’ without 
qualification means a relational or integer expression; the term ‘con-
straint’ or ‘formula’ refers to a boolean expression. The category of an 
expression is determined by its context; for example, the body of a fact, 
predicate or assertion is always a constraint, and the body of a function 
is always an expression.

Most operators apply only to one category of expression—the logical 
operators apply only to constraints, and the relational and arithmetic 
operators apply only to expressions—with the exception of the condi-
tional construct, expressed with implies (or =>) and else, and the let syn-
tax, which apply to all expression types.

Predicate invocation and function invocation both use the dot and box 
operators (as explained in section B.7.5), but are treated as constraints 
and expressions respectively.

A conditional expression takes the form

expr	::=	expr	(=> | implies)	expr	else	expr

In the expression

b	implies	e1	else	e2

b must be a boolean expression, and the result is the value of the expres-
sion e1 when b evaluates to true and the value of e2 when b evaluates to 
false. The expressions e1 and e2 may both be boolean expressions, or in-
teger expressions or relational expressions. When they are boolean ex-
pressions, the else clause may be omitted, in which case implies is treated 
as a simple binary operator, as if e2 were replaced by an expression that 
always evaluated to true (see section B.10). The keyword implies and the 
symbol => are interchangeable.

A let expression allows a variable to be introduced, to highlight an im-
portant subexpression or make an expression or constraint shorter by 
factoring out a repeated subexpression:

expr	::=	let	letDecl,+	blockOrBar
letDecl	::=	varId	=	expr

The expression

let	v1	=	e1,	v2	=	e2,	…	|	e



appendix b: alloy language reference 285

is equivalent to the expression e, but with each bound variable v1, v2, etc. 
replaced by its assigned expression e1, e2, etc. Variables appearing in the 
bounding expressions must have been previously declared. Recursive 
bindings are not permitted.

Any expression may be surrounded by parentheses to force a particular 
order of evaluation:

expr	::=	(	expr	)

B.8 Relational Expressions

An expression may be a constant:

expr	::=	const
const	::=	none	|	univ	|	iden

The three constants none, univ, and iden denote respectively the empty 
unary relation (that is, the set containing no elements), the universal 
unary relation (the set containing every element), and the identity rela-
tion (the binary relation that relates every element to itself ). Note that 
univ and iden are interpreted over the universe of all atoms. So a con-
straint such as

iden	in	r

will be unsatisfiable unless the relation r has type univ -> univ. To say that 
a relation r is reflexive with respect to a particular domain type t, one 
might write

t	<:	iden	in	r

An expression may consist of a qualified name, or a simple name pre-
fixed with the special marking @, or the keyword this:

expr	::=	qualName	|	@name	|	this
qualName	::=	[this/]	(name	/)*	name

If the name is the name of a field, its value is the value bound to that 
field in the instance being evaluated. In contexts in which field names 
are implicitly dereferenced—that is, in signature bounding expressions 
and signature facts—the prefix @ preempts dereferencing (see subsec-
tion B.7.2). If there is more than one field of the given name, the refer-
ence is resolved, or rejected if ambiguous (see section B.6). If the name 
denotes a quantified or let-bound variable, or the argument of a func-
tion or predicate, its value is determined by the binding.



286 appendix b: alloy language reference

A qualified name can include a path prefix that identifies the module 
(section B.7.1). In this case, the name may refer to a signature. It may 
also refer to a predicate or function, if the expression is part of an in-
vocation. A predicate or function without arguments can be invoked 
either with an empty argument list, or without an argument list at all 
(section B.7.5). Field names cannot be qualified; to disambiguate a field 
name, one can write S <: f, for example, to denote the field f of signature 
S, and the signature S may be given by a qualified name.

Within a predicate or function body, the special keyword this refers to 
an argument declared in receiver position; in a signature fact, it refers 
to the implicitly quantified member of the signature (see section B.7.2).

Compound expressions may be formed using unary and binary opera-
tors in various forms. In this section, we will consider the relational op-
erators alone; as noted above, the grammar does not distinguish expres-
sion types, although the type checker does. The expression forms are:

expr	::=	unOp	expr	|	expr	binOp	expr	|	expr	arrowOp	expr
	 |	expr	[	expr,*	]
unOp	::=	~	|	*	|	^
binOp	::=	&	|	+	|	-	|	++	|	<:	|	:>	|	.
arrowOp	::=	[mult | set]	->	[mult | set]

The value of a compound expression is obtained from the values of its 
constituents by applying the operator given. The meanings of the opera-
tors are as follows: 

· ~e: transpose of e;
· ^e: transitive closure of e;
· *e: reflexive-transitive closure of e;
· e1 + e2: union of e1 and e2;
· e1 - e2: difference of e1 and e2;
· e1 & e2: intersection of e1 and e2;
· e1 . e2: join of e1 and e2;
· e2 [e1]: join of e1 and e2;
· e1 -> e2: product of e1 and e2;
· e2 <: e1: domain restriction of e1 to e2;
· e1 :> e2: range restriction of e1 to e2;
· e1 ++ e2: relational override of e1 by e2.

For the first three (the unary operators), e is required to be binary. For 
the set theoretic operations (union, difference, and intersection) and for 
relational override, the arguments are required to have the same arity. 
For the restriction operators, the argument e2 is required to be a set.



appendix b: alloy language reference 287

Note that e1[e2] is equivalent to e2.e1, but the dot and box join opera-
tors have different precedence, so a.b[c] is parsed as (a.b)[c]. The dot 
and box operators are also used for predicate and function invocation, 
as explained in section B.7.5.

The transpose of a relation is its mirror image: the relation obtained by 
reversing each tuple. The transitive closure of a relation is the smallest 
enclosing relation that is transitive (that is, relates a to c whenever there 
is a b such that it relates a to b and b to c). The reflexive-transitive closure 
of a relation is the smallest enclosing relation that is transitive and re-
flexive (that is, includes the identity relation).

The union, difference, and intersection operators are the standard set 
theoretic operators, applied to relations viewed as sets of tuples. The 
union of e1 and e2 contains every tuple in e1 or in e2; the intersection of 
e1 and e2 contains every tuple in both e1 and in e2; the difference of e1 
and e2 contains every tuple in e1 but not in e2.

The join of two relations is the relation obtained by taking each com-
bination of a tuple from the first relation and a tuple from the second 
relation, and if the last element of the first tuple matches the first ele-
ment of the second tuple, including the concatenation of the two tuples, 
omitting the matching elements.

The product of two relations is the relation obtained by taking each com-
bination of a tuple from the first relation and a tuple from the second 
relation, and including their concatenation. The presence of multiplicity 
markings on either side of the arrow adds a constraint, as explained in 
section B.7.4.

The domain restriction of e1 to e2 contains all tuples in e1 that start with 
an element in the set e2. The range restriction of e1 to e2 contains all 
tuples in e1 that end with an element in the set e2. These operators are 
especially handy in resolving overloading (see section B.6).

The relational override of e1 by e2 contains all tuples in e2, and addi-
tionally, any tuples of e1 whose first element is not the first element of 
a tuple in e2. Note that override is defined for relations of arity greater 
than two, and that in this case, the override is determined using only 
the first columns.

An expression may be a comprehension expression:

expr	::=	{	decl,+	blockOrBar	}

The expression



288 appendix b: alloy language reference

{x1:	e1,	x2:	e2,	…	|	F}

denotes the relation obtained by taking all tuples x1 -> x2 -> … in which x1 
is drawn from the set e1, x2 is drawn from the set e2, and so on, and for 
which the constraint F holds. The expressions e1, e2, and so on, must be 
unary, and may not be prefixed by (or contain) multiplicity keywords. 
More general declaration forms are not permitted, except for the use of 
the disj keyword on the left-hand side of the declarations.

B.9 Integer Expressions

Relational expressions are “closed” with respect to the scope, which 
means that, for any given analysis, if some relations can be represented, 
then any combination of those relations can be expressed too. This is 
not true for the integer expressions. As explained in section B.7.6, in an 
analysis the bitwidth of integers is bounded. Thus while it may be pos-
sible to represent two integers, it may not be possible to represent their 
sum. This means that, when a constraint is analyzed, an instance will 
not be considered if any expression within the constraint would evalu-
ate (in that instance) to an integer beyond the scope.

An integer expression may be a constant:

expr	::=	const
const	::=	[-]	number

A numeric literal formed according to the lexical rules (section B.1) 
represents the number given, as a primitive integer; the analyzer will 
complain if the number is not expressible within the bitwidth of the 
analysis scope. The literal may be preceded by a minus sign to denote 
the negative integer.

Since a signature name may be appear as a constant expression, the 
built-in signature Int may be used to represent the set of integers within 
scope (as explained in section B.7.6).

There is one unary arithmetic operator, namely cardinality:

expr	::=	unOp	expr
unOp	::=	#

The expression #e denotes (as a primitive integer) the number of tuples 
in the relation denoted by e; for a set (ie, a unary relation), this corre-
sponds simply to the number of elements in the set.

The built-in function sum takes a set of integers and returns their sum, 
as if it were declared as



appendix b: alloy language reference 289

fun	sum	(s:	set	Int)	:	Int	{…}

Conventional arithmetic expressions are constructed with the follow-
ing built-in functions, using the standard syntax for function applica-
tion (that is, using the box or dot operator):

· plus [a,b]: returns the sum of a and b;
· minus [a,b]: returns the difference between a and b;
· mul [a,b]: returns the product of a and b;
· div [a,b]: returns the number of times b divides into a;
· rem [a,b]: returns the remainder when a is divided by b.

The sum function is applied implicitly to all the arguments of these func-
tions.

The sum quantifier allows a distributed summation to be expressed:

expr	::=	quant	decl,+	bar	expr
quant	::=	sum

The expression

sum	x1:	e1,	x2:	e2,	…	|	e

denotes the integer sum of the values obtained by evaluating the integer 
expression e by binding x1, x2, etc to the elements of the sets denoted by 
e1, e2, etc, in all possible combinations. The bounding expressions e1, e2, 
etc, must denote unary relations.

B.10 Boolean Expressions

There are no built-in boolean constants in Alloy, and boolean values 
cannot be stored within the tuples of a relation. So a function invo-
cation, whose body is a relational expression, never returns a boolean 
value. A predicate, in contrast, is a parameterized boolean expression, 
and its invocation (see section B.7.5) returns a boolean value.

Elementary boolean expressions are formed by comparing two relation-
al or integer expressions using comparison operators:

expr	::=	expr	[! | not]	compareOp	expr
compareOp	::=	in	|	=	|	<	|	>	|	=<	|	>=

The relational comparison operators are defined as follows:

· The expression e1 in e2 is true when the relation that e1 evaluates to 
is a subset of the relation that e2 evaluates to.



290 appendix b: alloy language reference

· The expression e1 = e2 is true when the relation that e1 evaluates to 
the same relation as e2, that is e1 in e2 and e2 in e1.

Note that relational equality is extensional: two relations are equal when 
they contain the same tuples.

As explained in section B.7.3, a boolean expression formed with the in 
keyword may, like a declaration, use multiplicity symbols to impose an 
additional constraint.

The arithmetic comparison operators are defined as follows:

· The constraint i < j is true when i is less than j.
· The constraint i > j is true when i is greater than j.
· The constraint i =< j is true when i is less than or equal to j.
· The constraint i >= j is true when i is greater than or equal to j.

The “less than or equal to” operator is written unconventionally with the 
equals symbol first so that it does not have the appearance of an arrow, 
which might be confused with a logical implication. For all these opera-
tors, the sum function is applied implicitly to their arguments, so that 
if a non-scalar set of integers is presented, the comparison acts on the 
sum of its elements.

Note that the equals symbol is not overloaded, and continues to have its 
relational meaning when applied to expressions denoting sets of inte-
gers. This means that if S and T are sets of integer atoms, the expression

S	=	T

says that S and T contain the same set of integers, and consequently, may 
be false even if both S =< T and S >= T are true (when one of the argu-
ments, for example, evaluates to a set of integers containing more than 
one element).

A constraint in which the comparison operator is negated,

e1	not	op	e2

is equivalent to the constraint obtained by moving the negation outside:

not	e1	op	e2

Boolean expressions can be combined with operators representing the 
standard logical connectives:

expr	::=	unOp	expr	|	expr	binOp	expr	|	expr	arrowOp	expr
unOp	::=	!	|	not
binOp	::=	||	|	or	|	&&	|	and	|	<=>	|	iff	|	=>	|	implies



appendix b: alloy language reference 291

The constraint not F is true when the constraint F is false, and vice versa. 
The negation operators not and ! are interchangeable in all contexts.  

The meaning of the binary operators is as follows:

· The expression F and G is true when F is true and G is true.
· The expression F or G is true when one or both of F and G are true.
· The expression F iff G is true when F and G are both false or both true.
· The expression F implies G is true when F is false or G is true.
· The expression F implies G else H is true when both F and G are true, 

or when F is false and H is true.

The logical connectives may be written interchangeably as symbols: && 
for and, || for or, => for implies and <=> for iff.

A block is a sequence of constraints enclosed in braces:

expr	::=	block
block	::=	{	expr*	}

The constraint

{	F	G	H	…	}

is equivalent to the conjunction

F	and	G	and	H	and	…

If the sequence is empty, its meaning is true.

A quantified expression is formed by prefixing a relational expression 
with a multiplicity keyword or the quantifier no:

expr	=	unOp	expr
unOp	::=	no	|	mult
mult	::=	lone	|	some	|	one

The meaning of such an expression is that the relation contains a count 
of tuples according to the keyword:

· no e is true when e evaluates to a relation containing no tuple.
· some e is true when e evaluates to a relation containing one or more 

tuples.
· lone e is true when e evaluates to a relation containing at most one 

tuple.
· one e is true when e evaluates to a relation containing exactly one 

tuple.

A quantified formula takes this form:



292 appendix b: alloy language reference

expr	::=	quant	decl,+	blockOrBar
block	::=	{	expr*	}
blockOrBar	::=	block	|	bar	expr
bar	::=	|

The expression in the body must be boolean (that is, a constraint and 
not a relational or arithmetic expression).

It makes no difference whether the constraint body is a single constraint 
preceded by a vertical bar, or a constraint sequence. The two forms are 
provided so that the vertical bar can be omitted when the body is a 
sequence of constraints. Some users prefer to use the bar in all cases, 
writing, for example,

all	x:	X	|	{	F	}

Others prefer never to use the bar, and use the braces even when the 
constraint sequence consists of only a single constraint:

all	x:	X	{	F	}

These forms are all acceptable and are interchangeable.

The meaning of a quantified formula depends on the quantifier:

· all x: e | F is true when F is true for all bindings of the variable x.
· no x: e | F is true when F is true for no bindings of the variable x.
· some x: e | F is true when F is true for one or more bindings of the 

variable x.
· lone x: e | F is true when F is true for at most one binding of the vari-

able x.
· one x: e | F is true when F is true for exactly one binding of the vari-

able x.

The range and type of the bound variable is determined by its declara-
tion (see subsection B.7.3). In a sequence of declarations, each declared 
variable may be bounded by the declarations or previously declared 
variables. For example, in the expression

all	x:	e,	y:	S	-	x	|	F

the variable x varies over the values of the expression e (assumed to 
represent a set), and the variable y varies over all elements of the set S 
except for x. When more than one variable is declared, the quantifier is 
interpreted over bindings of all variables. For example,

one	x:	X,	y:	Y	|	F



appendix b: alloy language reference 293

is true when there is exactly one binding that assigns values to x and y 
that makes F true. So although a quantified expression with multiple 
declarations may be regarded, for some quantifiers, as a shorthand for 
nested expressions, each with a single declaration, this is not true in 
general. Thus

all	x:	X,	y:	Y	|	F

is short for

all	x:	X	|	all	y:	Y	|	F

but

one	x:	X,	y:	Y	|	F

is not short for

one	x:	X	|	one	y:	Y	|	F

A quantified expression may be higher-order: that is, it may bind non-
scalar values to variables. Whether the expression is analyzable will de-
pend on whether it can be Skolemized by the analyzer, and, if not, how 
large the scope is.


